Online Hydraulic Stiffness Modulation of a Soft Robotic Fish tail for Improved Thrust and Efficiency.

Nana Obayashi, Kai Junge, Parth Singh, Josie Hughes
{"title":"Online Hydraulic Stiffness Modulation of a Soft Robotic Fish tail for Improved Thrust and Efficiency.","authors":"Nana Obayashi, Kai Junge, Parth Singh, Josie Hughes","doi":"10.1089/soro.2024.0030","DOIUrl":null,"url":null,"abstract":"<p><p>This paper explores online stiffness modulation within a single tail stroke for swimming soft robots. Despite advances in stiffening mechanisms, little attention has been given to dynamically adjusting stiffness in real-time, presenting a challenge in developing mechanisms with the requisite bandwidth to match tail actuation. Achieving an optimal balance between thrust and efficiency in swimming soft robots remains elusive, and the paper addresses this challenge by proposing a novel mechanism for independent stiffness control, leveraging fluid-driven stiffening within a patterned pouch. Inspired by fluidic-driven actuation, this approach exhibits high bandwidth and facilitates significant stiffness changes. We perform experiments to demonstrate how this mechanism enhances both thrust and swimming efficiency. The tail actuation and fluid-driven stiffening can be optimized for a specific combination of thrust and efficiency, tailored to the desired maneuver type. The paper further explores the complex interaction between the soft body and surrounding fluid and provides fluid dynamics insights gained from the vortices created during actuation. Through frequency modulation and online stiffening, the study extends the Pareto front of achievable thrust generation and swimming efficiency.</p>","PeriodicalId":94210,"journal":{"name":"Soft robotics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soft robotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1089/soro.2024.0030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper explores online stiffness modulation within a single tail stroke for swimming soft robots. Despite advances in stiffening mechanisms, little attention has been given to dynamically adjusting stiffness in real-time, presenting a challenge in developing mechanisms with the requisite bandwidth to match tail actuation. Achieving an optimal balance between thrust and efficiency in swimming soft robots remains elusive, and the paper addresses this challenge by proposing a novel mechanism for independent stiffness control, leveraging fluid-driven stiffening within a patterned pouch. Inspired by fluidic-driven actuation, this approach exhibits high bandwidth and facilitates significant stiffness changes. We perform experiments to demonstrate how this mechanism enhances both thrust and swimming efficiency. The tail actuation and fluid-driven stiffening can be optimized for a specific combination of thrust and efficiency, tailored to the desired maneuver type. The paper further explores the complex interaction between the soft body and surrounding fluid and provides fluid dynamics insights gained from the vortices created during actuation. Through frequency modulation and online stiffening, the study extends the Pareto front of achievable thrust generation and swimming efficiency.

软体机器人鱼尾的在线液压刚度调节,以提高推力和效率。
本文探讨了游泳软体机器人在单次尾部划动中的在线刚度调节。尽管加硬机制取得了进步,但人们很少关注实时动态调整刚度,这给开发具有必要带宽以匹配尾部驱动的机制带来了挑战。要在游泳软体机器人的推力和效率之间实现最佳平衡仍是一个难题,本文针对这一难题,提出了一种新的独立刚度控制机制,利用图案袋中的流体驱动刚度。受流体驱动传动的启发,这种方法具有高带宽,并能促进显著的刚度变化。我们通过实验证明了这种机制如何增强推力和提高游泳效率。尾部驱动和流体驱动刚度可根据所需的机动类型进行优化,以实现推力和效率的特定组合。论文进一步探讨了软体与周围流体之间复杂的相互作用,并提供了从驱动过程中产生的涡流中获得的流体动力学见解。通过频率调制和在线加固,该研究扩展了可实现推力产生和游泳效率的帕累托前沿。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信