The injured axon: intrinsic mechanisms driving axonal regeneration.

IF 14.6 1区 医学 Q1 NEUROSCIENCES
Trends in Neurosciences Pub Date : 2024-11-01 Epub Date: 2024-10-21 DOI:10.1016/j.tins.2024.09.009
Diogo Tomé, Ramiro D Almeida
{"title":"The injured axon: intrinsic mechanisms driving axonal regeneration.","authors":"Diogo Tomé, Ramiro D Almeida","doi":"10.1016/j.tins.2024.09.009","DOIUrl":null,"url":null,"abstract":"<p><p>Injury to the central nervous system (CNS) often results in permanent neurological impairments because axons fail to regenerate and re-establish lost synaptic contacts. By contrast, peripheral neurons can activate a pro-regenerative program and regenerate following a nerve lesion. This relies on an intricate intracellular communication system between the severed axon and the cell body. Locally activated signaling molecules are retrogradely transported to the soma to promote the epigenetic and transcriptional changes required for the injured neuron to regain growth competence. These signaling events rely heavily on intra-axonal translation and mitochondrial trafficking into the severed axon. Here, we discuss the interplay between these mechanisms and the main intrinsic barriers to axonal regeneration. We also examine the potential of manipulating these processes for driving CNS repair.</p>","PeriodicalId":23325,"journal":{"name":"Trends in Neurosciences","volume":" ","pages":"875-891"},"PeriodicalIF":14.6000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Neurosciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.tins.2024.09.009","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/21 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Injury to the central nervous system (CNS) often results in permanent neurological impairments because axons fail to regenerate and re-establish lost synaptic contacts. By contrast, peripheral neurons can activate a pro-regenerative program and regenerate following a nerve lesion. This relies on an intricate intracellular communication system between the severed axon and the cell body. Locally activated signaling molecules are retrogradely transported to the soma to promote the epigenetic and transcriptional changes required for the injured neuron to regain growth competence. These signaling events rely heavily on intra-axonal translation and mitochondrial trafficking into the severed axon. Here, we discuss the interplay between these mechanisms and the main intrinsic barriers to axonal regeneration. We also examine the potential of manipulating these processes for driving CNS repair.

受伤的轴突:驱动轴突再生的内在机制。
中枢神经系统(CNS)的损伤通常会导致永久性神经损伤,因为轴突无法再生并重建失去的突触联系。相比之下,外周神经元在神经损伤后可以激活促进再生的程序并再生。这有赖于被切断的轴突与细胞体之间错综复杂的细胞内通信系统。局部激活的信号分子逆向运输到细胞体,促进损伤神经元恢复生长能力所需的表观遗传和转录变化。这些信号事件在很大程度上依赖于轴内翻译和线粒体向断裂轴突的运输。在这里,我们将讨论这些机制之间的相互作用以及轴突再生的主要内在障碍。我们还探讨了操纵这些过程以推动中枢神经系统修复的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Trends in Neurosciences
Trends in Neurosciences 医学-神经科学
CiteScore
26.50
自引率
1.30%
发文量
123
审稿时长
6-12 weeks
期刊介绍: For over four decades, Trends in Neurosciences (TINS) has been a prominent source of inspiring reviews and commentaries across all disciplines of neuroscience. TINS is a monthly, peer-reviewed journal, and its articles are curated by the Editor and authored by leading researchers in their respective fields. The journal communicates exciting advances in brain research, serves as a voice for the global neuroscience community, and highlights the contribution of neuroscientific research to medicine and society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信