{"title":"Enhanced Correlation between Arousal and Infra-Slow Brain Activity in Experienced Meditators.","authors":"Duho Sihn, Sung-Phil Kim","doi":"10.3390/brainsci14100981","DOIUrl":null,"url":null,"abstract":"<p><strong>Background/objectives: </strong>Meditation induces changes in the nervous system, which presumably underpin positive psychological and physiological effects. Such neural changes include alterations in the arousal fluctuation, as well as in infraslow brain activity (ISA, <0.1 Hz). Furthermore, it is known that fluctuations of arousal over time correlate with the oscillatory phase of ISA. However, whether this arousal-ISA correlation changes after meditation practices remains unanswered.; Methods: The present study aims to address this question by analyzing a publicly available electroencephalogram (EEG) dataset recorded during meditation sessions in the groups of experienced meditators and novices. The arousal fluctuation is measured by galvanic skin responses (GSR), and arousal-ISA correlations are measured by phase synchronization between GSR and EEG ISAs.; Results: While both groups exhibit arousal-ISA correlations, experienced meditators display higher correlations than novices. These increased arousal-ISA correlations in experienced meditators manifest more clearly when oscillatory phase differences between GSR and EEG ISAs are either 0 or π radians. As such, we further investigate the characteristics of these phase differences with respect to spatial distribution over the brain. We found that brain regions with the phase difference of either 0 or π radians form distinct spatial clusters, and that these clusters are spatially correlated with functional organization estimated by the principal gradient, based on functional connectivity.; Conclusions: Since increased arousal-ISA correlations reflect enhanced global organization of the central and autonomic nervous systems, our findings imply that the positive effects of meditation might be mediated by enhanced global organization of the nervous system.</p>","PeriodicalId":9095,"journal":{"name":"Brain Sciences","volume":"14 10","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11506050/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/brainsci14100981","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Background/objectives: Meditation induces changes in the nervous system, which presumably underpin positive psychological and physiological effects. Such neural changes include alterations in the arousal fluctuation, as well as in infraslow brain activity (ISA, <0.1 Hz). Furthermore, it is known that fluctuations of arousal over time correlate with the oscillatory phase of ISA. However, whether this arousal-ISA correlation changes after meditation practices remains unanswered.; Methods: The present study aims to address this question by analyzing a publicly available electroencephalogram (EEG) dataset recorded during meditation sessions in the groups of experienced meditators and novices. The arousal fluctuation is measured by galvanic skin responses (GSR), and arousal-ISA correlations are measured by phase synchronization between GSR and EEG ISAs.; Results: While both groups exhibit arousal-ISA correlations, experienced meditators display higher correlations than novices. These increased arousal-ISA correlations in experienced meditators manifest more clearly when oscillatory phase differences between GSR and EEG ISAs are either 0 or π radians. As such, we further investigate the characteristics of these phase differences with respect to spatial distribution over the brain. We found that brain regions with the phase difference of either 0 or π radians form distinct spatial clusters, and that these clusters are spatially correlated with functional organization estimated by the principal gradient, based on functional connectivity.; Conclusions: Since increased arousal-ISA correlations reflect enhanced global organization of the central and autonomic nervous systems, our findings imply that the positive effects of meditation might be mediated by enhanced global organization of the nervous system.
期刊介绍:
Brain Sciences (ISSN 2076-3425) is a peer-reviewed scientific journal that publishes original articles, critical reviews, research notes and short communications in the areas of cognitive neuroscience, developmental neuroscience, molecular and cellular neuroscience, neural engineering, neuroimaging, neurolinguistics, neuropathy, systems neuroscience, and theoretical and computational neuroscience. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files or software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.