Alaa Ahmed Alsiddig Hassan, Young Hun Jin, Jae-Hyung Mah
{"title":"Influence of <i>Pediococcus pentosaceus</i> Starter Cultures on Biogenic Amine Content and Antioxidant Activity in African Sourdough Flatbread Fermentation.","authors":"Alaa Ahmed Alsiddig Hassan, Young Hun Jin, Jae-Hyung Mah","doi":"10.3390/antiox13101204","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigated the impact of <i>Pediococcus pentosaceus</i> strains not only on biogenic amine (BA) content, but also on antioxidant indices, including 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging activity and total phenolic content, in kisra, an African sourdough flatbread. Among forty-six lactic acid bacteria (LAB) strains isolated from naturally fermented kisra sourdough, two strains (K-B21, K-B01) identified as <i>P. pentosaceus,</i> were selected due to their low BA-producing and high BA-degrading ability for kisra fermentation. Inoculation with <i>P. pentosaceus</i> K-B21 or <i>P. pentosaceus</i> K-B01 completely prevented the formation of tyramine and cadaverine during kisra fermentation. The levels of putrescine, histamine, spermine, and spermidine in kisra were reduced by about 90%, >31%, 55-61%, and 9-25%, respectively, by the two strains, compared to the control (natural fermentation). Additionally, DPPH scavenging activity was 83-84% in the control and inoculated groups of kisra. The total phenolic content was 1977.60 μg/g in the control and insignificantly lower in the inoculated groups (1850-1880 μg/g) than the control. These results suggest that <i>P. pentosaceus</i> K-B21 and K-B01 are promising candidates for use as sourdough starter cultures to produce kisra bread of higher quality, including both its safety and health functionality.</p>","PeriodicalId":7984,"journal":{"name":"Antioxidants","volume":"13 10","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11504419/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antioxidants","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/antiox13101204","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigated the impact of Pediococcus pentosaceus strains not only on biogenic amine (BA) content, but also on antioxidant indices, including 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging activity and total phenolic content, in kisra, an African sourdough flatbread. Among forty-six lactic acid bacteria (LAB) strains isolated from naturally fermented kisra sourdough, two strains (K-B21, K-B01) identified as P. pentosaceus, were selected due to their low BA-producing and high BA-degrading ability for kisra fermentation. Inoculation with P. pentosaceus K-B21 or P. pentosaceus K-B01 completely prevented the formation of tyramine and cadaverine during kisra fermentation. The levels of putrescine, histamine, spermine, and spermidine in kisra were reduced by about 90%, >31%, 55-61%, and 9-25%, respectively, by the two strains, compared to the control (natural fermentation). Additionally, DPPH scavenging activity was 83-84% in the control and inoculated groups of kisra. The total phenolic content was 1977.60 μg/g in the control and insignificantly lower in the inoculated groups (1850-1880 μg/g) than the control. These results suggest that P. pentosaceus K-B21 and K-B01 are promising candidates for use as sourdough starter cultures to produce kisra bread of higher quality, including both its safety and health functionality.
AntioxidantsBiochemistry, Genetics and Molecular Biology-Physiology
CiteScore
10.60
自引率
11.40%
发文量
2123
审稿时长
16.3 days
期刊介绍:
Antioxidants (ISSN 2076-3921), provides an advanced forum for studies related to the science and technology of antioxidants. It publishes research papers, reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.