Employing Titanium Dioxide Nanoparticles as Biostimulant against Salinity: Improving Antioxidative Defense and Reactive Oxygen Species Balancing in Eggplant Seedlings.
Muhammad Fasih Khalid, Muhammad Zaid Jawaid, Muddasir Nawaz, Rana Abdul Shakoor, Talaat Ahmed
{"title":"Employing Titanium Dioxide Nanoparticles as Biostimulant against Salinity: Improving Antioxidative Defense and Reactive Oxygen Species Balancing in Eggplant Seedlings.","authors":"Muhammad Fasih Khalid, Muhammad Zaid Jawaid, Muddasir Nawaz, Rana Abdul Shakoor, Talaat Ahmed","doi":"10.3390/antiox13101209","DOIUrl":null,"url":null,"abstract":"<p><p>Salinity is a major abiotic stress that affects the agricultural sector and poses a significant threat to sustainable crop production. Nanoparticles (NPs) act as biostimulants and significantly mitigate abiotic stress. In this context, this experiment was designed to assess the effects of foliar application of titanium dioxide (TiO<sub>2</sub>) nanoparticles at 200 and 400 ppm on the growth of eggplant (<i>Solanum melongena</i>) seedlings under moderate (75 mM) and high (150 mM) salinity stress. The TiO<sub>2</sub>-NPs employed were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), thermal gravimetric analysis (TGA), and scanning electron microscopy (SEM) analysis. The seedlings were assessed physiologically, growth-wise, and biochemically. The seedlings were significantly affected by their physiological attributes (Fv'/Fm', Fv/Fm, NPQ), growth (root length, shoot length, number of leaves, fresh biomass, dry biomass, leaf greenness), antioxidative enzymes (SOD, POD, CAT, APx, GR), stress indicators (H<sub>2</sub>O<sub>2</sub>, MDA), and toxic ion (Na<sup>+</sup>) concentrations. The maximum decrease in physiological and growth attributes in eggplant seedling leaves was observed with no TiO<sub>2</sub>-NP application at 150 mM NaCl. Applying TiO<sub>2</sub>-NPs at 200 ppm showed significantly less decrease in Fv'/Fm', root length, shoot length, number of leaves, fresh biomass, dry biomass, and leaf greenness. In contrast, there were larger increases in SOD, POD, CAT, APx, GR, and TSP. This led to less accumulation of H<sub>2</sub>O<sub>2</sub>, MDA, and Na<sup>+</sup>. No significant difference was observed in higher concentrations of TiO<sub>2</sub>-NPs compared to the control. Therefore, TiO<sub>2</sub>-NPs at 200 ppm might be used to grow eggplant seedlings at moderate and high salinity.</p>","PeriodicalId":7984,"journal":{"name":"Antioxidants","volume":"13 10","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11505378/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antioxidants","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/antiox13101209","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Salinity is a major abiotic stress that affects the agricultural sector and poses a significant threat to sustainable crop production. Nanoparticles (NPs) act as biostimulants and significantly mitigate abiotic stress. In this context, this experiment was designed to assess the effects of foliar application of titanium dioxide (TiO2) nanoparticles at 200 and 400 ppm on the growth of eggplant (Solanum melongena) seedlings under moderate (75 mM) and high (150 mM) salinity stress. The TiO2-NPs employed were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), thermal gravimetric analysis (TGA), and scanning electron microscopy (SEM) analysis. The seedlings were assessed physiologically, growth-wise, and biochemically. The seedlings were significantly affected by their physiological attributes (Fv'/Fm', Fv/Fm, NPQ), growth (root length, shoot length, number of leaves, fresh biomass, dry biomass, leaf greenness), antioxidative enzymes (SOD, POD, CAT, APx, GR), stress indicators (H2O2, MDA), and toxic ion (Na+) concentrations. The maximum decrease in physiological and growth attributes in eggplant seedling leaves was observed with no TiO2-NP application at 150 mM NaCl. Applying TiO2-NPs at 200 ppm showed significantly less decrease in Fv'/Fm', root length, shoot length, number of leaves, fresh biomass, dry biomass, and leaf greenness. In contrast, there were larger increases in SOD, POD, CAT, APx, GR, and TSP. This led to less accumulation of H2O2, MDA, and Na+. No significant difference was observed in higher concentrations of TiO2-NPs compared to the control. Therefore, TiO2-NPs at 200 ppm might be used to grow eggplant seedlings at moderate and high salinity.
AntioxidantsBiochemistry, Genetics and Molecular Biology-Physiology
CiteScore
10.60
自引率
11.40%
发文量
2123
审稿时长
16.3 days
期刊介绍:
Antioxidants (ISSN 2076-3921), provides an advanced forum for studies related to the science and technology of antioxidants. It publishes research papers, reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.