Jopaul Mathew, Bo Zhou, Reagan S Haney, Kevin A Kunz, Leticia S Do Amaral, Rudraneel Roy Chowdhury, Joshua H Butler, Haibo Li, Amarraj J Chakraborty, Anika Tabassum, Emily K Bremers, Emilio F Merino, Rachael Coyle, Marcus C S Lee, Delphine Baud, Stephen Brand, Maxim Totrov, Maria Belen Cassera, Paul R Carlier
{"title":"β-Carboline-3-carboxamide Antimalarials: Structure-Activity Relationship, ADME-Tox Studies, and Resistance Profiling.","authors":"Jopaul Mathew, Bo Zhou, Reagan S Haney, Kevin A Kunz, Leticia S Do Amaral, Rudraneel Roy Chowdhury, Joshua H Butler, Haibo Li, Amarraj J Chakraborty, Anika Tabassum, Emily K Bremers, Emilio F Merino, Rachael Coyle, Marcus C S Lee, Delphine Baud, Stephen Brand, Maxim Totrov, Maria Belen Cassera, Paul R Carlier","doi":"10.1021/acsinfecdis.4c00653","DOIUrl":null,"url":null,"abstract":"<p><p>The development of parasite resistance to both artemisinin derivatives and their partner drugs jeopardizes the effectiveness of the artemisinin combination therapy. Thus, the discovery of new antimalarial drugs, with new mechanisms of action, is urgently needed. We recently disclosed that β-carboline <b>1a</b> was orally efficacious in <i>Plasmodium berghei</i>-infected mice and that it showed low cross-resistance between susceptible <i>Plasmodium falciparum</i> and four different drug-resistant strains. In this report, we describe the synthesis and <i>in vitro</i> antimalarial evaluation of 91 new derivatives of <b>1a</b>. The asexual blood stage growth inhibition data show a clear preference for a 3,4-dihalogenated, 3,5-dihalogenated, 3,4,5-trichloro-, or 4-trifluoromethyphenyl ring at the C1-position. The most potent compound, 3,4,5-trichlorophenyl-substituted <b>42a</b>, is twice as potent as <b>1a</b>. Six potent analogues were assessed for their drug-like properties, and four of these were subjected to <i>in vitro</i> barcoded cross-resistance profiling. Compounds <b>1a</b>, <b>1m</b>, <b>42a</b>, and <b>42m</b> showed no cross-resistance to 32 resistance mutations on the Dd2 genetic background and 10 resistance mutations on the 3D7 genetic background. These data suggest that compounds in this scaffold possess a novel mechanism of antimalarial action.</p>","PeriodicalId":17,"journal":{"name":"ACS Infectious Diseases","volume":null,"pages":null},"PeriodicalIF":4.0000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Infectious Diseases","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acsinfecdis.4c00653","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
The development of parasite resistance to both artemisinin derivatives and their partner drugs jeopardizes the effectiveness of the artemisinin combination therapy. Thus, the discovery of new antimalarial drugs, with new mechanisms of action, is urgently needed. We recently disclosed that β-carboline 1a was orally efficacious in Plasmodium berghei-infected mice and that it showed low cross-resistance between susceptible Plasmodium falciparum and four different drug-resistant strains. In this report, we describe the synthesis and in vitro antimalarial evaluation of 91 new derivatives of 1a. The asexual blood stage growth inhibition data show a clear preference for a 3,4-dihalogenated, 3,5-dihalogenated, 3,4,5-trichloro-, or 4-trifluoromethyphenyl ring at the C1-position. The most potent compound, 3,4,5-trichlorophenyl-substituted 42a, is twice as potent as 1a. Six potent analogues were assessed for their drug-like properties, and four of these were subjected to in vitro barcoded cross-resistance profiling. Compounds 1a, 1m, 42a, and 42m showed no cross-resistance to 32 resistance mutations on the Dd2 genetic background and 10 resistance mutations on the 3D7 genetic background. These data suggest that compounds in this scaffold possess a novel mechanism of antimalarial action.
期刊介绍:
ACS Infectious Diseases will be the first journal to highlight chemistry and its role in this multidisciplinary and collaborative research area. The journal will cover a diverse array of topics including, but not limited to:
* Discovery and development of new antimicrobial agents — identified through target- or phenotypic-based approaches as well as compounds that induce synergy with antimicrobials.
* Characterization and validation of drug target or pathways — use of single target and genome-wide knockdown and knockouts, biochemical studies, structural biology, new technologies to facilitate characterization and prioritization of potential drug targets.
* Mechanism of drug resistance — fundamental research that advances our understanding of resistance; strategies to prevent resistance.
* Mechanisms of action — use of genetic, metabolomic, and activity- and affinity-based protein profiling to elucidate the mechanism of action of clinical and experimental antimicrobial agents.
* Host-pathogen interactions — tools for studying host-pathogen interactions, cellular biochemistry of hosts and pathogens, and molecular interactions of pathogens with host microbiota.
* Small molecule vaccine adjuvants for infectious disease.
* Viral and bacterial biochemistry and molecular biology.