{"title":"Human–Robot Cooperative Piano Playing With Learning-Based Real-Time Music Accompaniment","authors":"Huijiang Wang;Xiaoping Zhang;Fumiya Iida","doi":"10.1109/TRO.2024.3484633","DOIUrl":null,"url":null,"abstract":"Recent advances in machine learning have paved the way for the development of musical and entertainment robots. However, human–robot cooperative instrument playing remains a challenge, particularly due to the intricate motor coordination and temporal synchronization. In this article, we propose a theoretical framework for human–robot cooperative piano playing based on nonverbal cues. First, we present a music improvisation model that employs a recurrent neural network (RNN) to predict appropriate chord progressions based on the human's melodic input. Second, we propose a behavior-adaptive controller to facilitate seamless temporal synchronization, allowing the cobot to generate harmonious acoustics. The collaboration takes into account the bidirectional information flow between the human and robot. We have developed an entropy-based system to assess the quality of cooperation by analyzing the impact of different communication modalities during human–robot collaboration. Experiments demonstrate that our RNN-based improvisation can achieve a 93% accuracy rate. Meanwhile, with the MPC adaptive controller, the robot could respond to the human teammate in homophony performances with real-time accompaniment. Our designed framework has been validated to be effective in allowing humans and robots to work collaboratively in the artistic piano-playing task.","PeriodicalId":50388,"journal":{"name":"IEEE Transactions on Robotics","volume":"40 ","pages":"4650-4669"},"PeriodicalIF":9.4000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Robotics","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10726887/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Recent advances in machine learning have paved the way for the development of musical and entertainment robots. However, human–robot cooperative instrument playing remains a challenge, particularly due to the intricate motor coordination and temporal synchronization. In this article, we propose a theoretical framework for human–robot cooperative piano playing based on nonverbal cues. First, we present a music improvisation model that employs a recurrent neural network (RNN) to predict appropriate chord progressions based on the human's melodic input. Second, we propose a behavior-adaptive controller to facilitate seamless temporal synchronization, allowing the cobot to generate harmonious acoustics. The collaboration takes into account the bidirectional information flow between the human and robot. We have developed an entropy-based system to assess the quality of cooperation by analyzing the impact of different communication modalities during human–robot collaboration. Experiments demonstrate that our RNN-based improvisation can achieve a 93% accuracy rate. Meanwhile, with the MPC adaptive controller, the robot could respond to the human teammate in homophony performances with real-time accompaniment. Our designed framework has been validated to be effective in allowing humans and robots to work collaboratively in the artistic piano-playing task.
期刊介绍:
The IEEE Transactions on Robotics (T-RO) is dedicated to publishing fundamental papers covering all facets of robotics, drawing on interdisciplinary approaches from computer science, control systems, electrical engineering, mathematics, mechanical engineering, and beyond. From industrial applications to service and personal assistants, surgical operations to space, underwater, and remote exploration, robots and intelligent machines play pivotal roles across various domains, including entertainment, safety, search and rescue, military applications, agriculture, and intelligent vehicles.
Special emphasis is placed on intelligent machines and systems designed for unstructured environments, where a significant portion of the environment remains unknown and beyond direct sensing or control.