Ye Wujian, Zheng Yingcong, Chen Yuehai, Liu Yijun, Mou Zhiwei
{"title":"Post-Stroke Dysarthria Voice Recognition based on Fusion Feature MSA and 1D.","authors":"Ye Wujian, Zheng Yingcong, Chen Yuehai, Liu Yijun, Mou Zhiwei","doi":"10.1080/10255842.2024.2410228","DOIUrl":null,"url":null,"abstract":"<p><p>Post-stroke Dysarthria (PSD) is one of the common sequelae of stroke. PSD can harm patients' quality of life and, in severe cases, be life-threatening. Most of the existing methods use frequency domain features to recognize the pathological voice, which makes it hard to completely represent the characteristics of pathological voice. Although some results have been achieved, there is still a long way to go for practical applications. Therefore, an improved deep learning-based model is proposed to classify between the pathological voice and the normal voice, using a novel fusion feature (MSA) and an improved 1D ResNet network hybrid bi-directional LSTM with dilated convolution (named 1D DRN-biLSTM). The experimental results show that our fusion features bring greater improvement in pathological speech recognition than the method that only analyzes the MFCC features, and can better synthesize the hidden features that characterize pathological speech. In terms of model structure, the introduction of dilated convolution and LSTM can further improve the performance of the 1D Resnet network, compared to ordinary networks such as CNN and LSTM. The accuracy of this method reaches 82.41% and 100% at the syllable level and speaker level, respectively. Our scheme outperforms other existing methods in terms of feature learning capability and recognition rate, and will help to play an important role in the assessment and diagnosis of PSD in China.</p>","PeriodicalId":50640,"journal":{"name":"Computer Methods in Biomechanics and Biomedical Engineering","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Biomechanics and Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10255842.2024.2410228","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Post-stroke Dysarthria (PSD) is one of the common sequelae of stroke. PSD can harm patients' quality of life and, in severe cases, be life-threatening. Most of the existing methods use frequency domain features to recognize the pathological voice, which makes it hard to completely represent the characteristics of pathological voice. Although some results have been achieved, there is still a long way to go for practical applications. Therefore, an improved deep learning-based model is proposed to classify between the pathological voice and the normal voice, using a novel fusion feature (MSA) and an improved 1D ResNet network hybrid bi-directional LSTM with dilated convolution (named 1D DRN-biLSTM). The experimental results show that our fusion features bring greater improvement in pathological speech recognition than the method that only analyzes the MFCC features, and can better synthesize the hidden features that characterize pathological speech. In terms of model structure, the introduction of dilated convolution and LSTM can further improve the performance of the 1D Resnet network, compared to ordinary networks such as CNN and LSTM. The accuracy of this method reaches 82.41% and 100% at the syllable level and speaker level, respectively. Our scheme outperforms other existing methods in terms of feature learning capability and recognition rate, and will help to play an important role in the assessment and diagnosis of PSD in China.
期刊介绍:
The primary aims of Computer Methods in Biomechanics and Biomedical Engineering are to provide a means of communicating the advances being made in the areas of biomechanics and biomedical engineering and to stimulate interest in the continually emerging computer based technologies which are being applied in these multidisciplinary subjects. Computer Methods in Biomechanics and Biomedical Engineering will also provide a focus for the importance of integrating the disciplines of engineering with medical technology and clinical expertise. Such integration will have a major impact on health care in the future.