{"title":"Shaping the Future of Functional Foods: Using 3D Printing for the Encapsulation and Development of New Probiotic Foods.","authors":"Josemar Gonçalves de Oliveira Filho, Larissa Graziele Rauber Duarte, Diego Oliveira Bonfim, Mateus Kawata Salgaço, Luiz Henrique Caparelli Mattoso, Mariana Buranelo Egea","doi":"10.1007/s12602-024-10382-5","DOIUrl":null,"url":null,"abstract":"<p><p>Consumers have been demanding foods that, besides providing nutrition, bring some health benefits, known as functional foods. The insertion of probiotics in foods is a strategy for developing functional foods. Still, it has been a challenge because these matrices have different pHs and undergo different process temperatures and times that can reduce the viability of these microorganisms. In this sense, encapsulation using 3D printing emerges to protect probiotic microorganisms and ensure that they reach the intestine viable and carry out the expected beneficial action. Thus, this review evaluates the current advancements in 3D printing to encapsulate and develop novel probiotic foods. Research has shown that 3D printing effectively encapsulates probiotic microorganisms, preserving their viability throughout the gastrointestinal tract. Studies have proven the effectiveness of 3D printing encapsulation in protecting probiotics during processing, storage, and digestion. Innovative formulations for 3D bioprinted products with probiotics, such as food structures based on cereals, mashed potatoes, and cream, have been developed. Producing products with shelf life and combining applications of phytochemicals and probiotics aims to improve personalized nutrition, textural characteristics, and sensory attributes of the foods produced by this emerging approach. Therefore, 3D printing of foods with probiotics has the potential to create new products that meet this demand.</p>","PeriodicalId":20506,"journal":{"name":"Probiotics and Antimicrobial Proteins","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Probiotics and Antimicrobial Proteins","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12602-024-10382-5","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Consumers have been demanding foods that, besides providing nutrition, bring some health benefits, known as functional foods. The insertion of probiotics in foods is a strategy for developing functional foods. Still, it has been a challenge because these matrices have different pHs and undergo different process temperatures and times that can reduce the viability of these microorganisms. In this sense, encapsulation using 3D printing emerges to protect probiotic microorganisms and ensure that they reach the intestine viable and carry out the expected beneficial action. Thus, this review evaluates the current advancements in 3D printing to encapsulate and develop novel probiotic foods. Research has shown that 3D printing effectively encapsulates probiotic microorganisms, preserving their viability throughout the gastrointestinal tract. Studies have proven the effectiveness of 3D printing encapsulation in protecting probiotics during processing, storage, and digestion. Innovative formulations for 3D bioprinted products with probiotics, such as food structures based on cereals, mashed potatoes, and cream, have been developed. Producing products with shelf life and combining applications of phytochemicals and probiotics aims to improve personalized nutrition, textural characteristics, and sensory attributes of the foods produced by this emerging approach. Therefore, 3D printing of foods with probiotics has the potential to create new products that meet this demand.
消费者一直要求食品除了提供营养外,还能带来一些健康益处,这就是所谓的功能性食品。在食品中添加益生菌是开发功能食品的一种策略。然而,这仍然是一项挑战,因为这些基质具有不同的 pH 值,并经历不同的加工温度和时间,这些都会降低这些微生物的活力。从这个意义上说,利用三维打印技术进行封装可以保护益生菌微生物,并确保它们能在肠道中存活并发挥预期的有益作用。因此,本综述评估了目前在三维打印封装和开发新型益生菌食品方面取得的进展。研究表明,三维打印技术能有效封装益生菌微生物,在整个胃肠道中保持其活力。研究证明,3D 打印封装技术可在加工、储存和消化过程中有效保护益生菌。目前已开发出含有益生菌的 3D 生物打印产品的创新配方,如基于谷物、土豆泥和奶油的食品结构。生产具有保质期的产品,并结合植物化学物质和益生菌的应用,旨在改善这种新兴方法生产的食品的个性化营养、质地特征和感官属性。因此,含有益生菌的 3D 打印食品有可能创造出满足这一需求的新产品。
期刊介绍:
Probiotics and Antimicrobial Proteins publishes reviews, original articles, letters and short notes and technical/methodological communications aimed at advancing fundamental knowledge and exploration of the applications of probiotics, natural antimicrobial proteins and their derivatives in biomedical, agricultural, veterinary, food, and cosmetic products. The Journal welcomes fundamental research articles and reports on applications of these microorganisms and substances, and encourages structural studies and studies that correlate the structure and functional properties of antimicrobial proteins.