The Modulatory Effect of an Ethanolic Extract of Anredera cordifolia (Ten.) on the Proliferation and Migration of Hyperglycemic Fibroblasts in an In Vitro Diabetic Wound Model.

2区 生物学 Q1 Biochemistry, Genetics and Molecular Biology
Oxidative Medicine and Cellular Longevity Pub Date : 2024-10-08 eCollection Date: 2024-01-01 DOI:10.1155/2024/2812290
Elisa Vanessa Heisler, Bárbara Osmarim Turra, Nathália Cardoso de Afonso Bonotto, Ivana Beatrice Mânica da Cruz, Marco Aurélio Echart Montano, Verônica Farina Azzolin, Jacir Dal Magro, Felipe Zaniol, Juliano Perottoni, Maria Eduarda Chelotti, Fernanda Dos Santos Trombini, Ednea A Maia-Ribeiro, Fernanda Barbisan, Maria Denise Schimith
{"title":"The Modulatory Effect of an Ethanolic Extract of <i>Anredera cordifolia</i> (Ten.) on the Proliferation and Migration of Hyperglycemic Fibroblasts in an <i>In Vitro</i> Diabetic Wound Model.","authors":"Elisa Vanessa Heisler, Bárbara Osmarim Turra, Nathália Cardoso de Afonso Bonotto, Ivana Beatrice Mânica da Cruz, Marco Aurélio Echart Montano, Verônica Farina Azzolin, Jacir Dal Magro, Felipe Zaniol, Juliano Perottoni, Maria Eduarda Chelotti, Fernanda Dos Santos Trombini, Ednea A Maia-Ribeiro, Fernanda Barbisan, Maria Denise Schimith","doi":"10.1155/2024/2812290","DOIUrl":null,"url":null,"abstract":"<p><p>Diabetes mellitus is associated with chronic wound-healing problems that significantly impact patients' quality of life and substantially increase expenditure on healthcare. Therefore, the identification of compounds that can aid healing is justified. <i>Anredera cordifolia</i> (Ten.) has been used in folk medicine for curative purposes; however, the causal mechanisms underlying its healing effects remain to be elucidated. In this study, the effect of the ethanolic extract of <i>A. cordifolia</i> was evaluated in an <i>in vitro</i> healing model using fibroblasts cultivated under normoglycemic and hyperglycemic environments. The extract was predominantly composed of phytol and exhibited genoprotective activity. Fibroblast migration attenuated the adverse effects of hyperglycemia, favoring cell proliferation. Collagen levels were significantly increased in ruptured fibroblasts under both standard and hyperglycemic environments. The phytogenomic effect of the extract on three genes related to extracellular matrix formation, maintenance, and degradation showed that <i>A. cordifolia</i> increased the expression of genes related to matrix synthesis and maintenance in both normoglycemic and hyperglycemic individuals. Furthermore, it reduced the expression of genes related to matrix degradation. Overall, this is the first study to demonstrate the effectiveness of <i>A. cordifolia</i> in wound healing, elucidating possible causal mechanisms that appear to be based on the genoprotective effect of this plant on the migratory and proliferative phases of the wound healing process; these effects are probably related to phytol, its main constituent.</p>","PeriodicalId":19657,"journal":{"name":"Oxidative Medicine and Cellular Longevity","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11479783/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oxidative Medicine and Cellular Longevity","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1155/2024/2812290","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

Abstract

Diabetes mellitus is associated with chronic wound-healing problems that significantly impact patients' quality of life and substantially increase expenditure on healthcare. Therefore, the identification of compounds that can aid healing is justified. Anredera cordifolia (Ten.) has been used in folk medicine for curative purposes; however, the causal mechanisms underlying its healing effects remain to be elucidated. In this study, the effect of the ethanolic extract of A. cordifolia was evaluated in an in vitro healing model using fibroblasts cultivated under normoglycemic and hyperglycemic environments. The extract was predominantly composed of phytol and exhibited genoprotective activity. Fibroblast migration attenuated the adverse effects of hyperglycemia, favoring cell proliferation. Collagen levels were significantly increased in ruptured fibroblasts under both standard and hyperglycemic environments. The phytogenomic effect of the extract on three genes related to extracellular matrix formation, maintenance, and degradation showed that A. cordifolia increased the expression of genes related to matrix synthesis and maintenance in both normoglycemic and hyperglycemic individuals. Furthermore, it reduced the expression of genes related to matrix degradation. Overall, this is the first study to demonstrate the effectiveness of A. cordifolia in wound healing, elucidating possible causal mechanisms that appear to be based on the genoprotective effect of this plant on the migratory and proliferative phases of the wound healing process; these effects are probably related to phytol, its main constituent.

Anredera cordifolia(Ten.)乙醇提取物对体外糖尿病伤口模型中高血糖成纤维细胞增殖和迁移的调节作用。
糖尿病与慢性伤口愈合问题有关,这些问题严重影响了患者的生活质量,并大大增加了医疗开支。因此,有必要找出有助于伤口愈合的化合物。Anredera cordifolia(Ten.)在民间医学中一直被用于治疗目的,但其愈合效果的因果机制仍有待阐明。本研究使用在正常血糖和高血糖环境下培养的成纤维细胞,在体外愈合模型中评估了 A. cordifolia 的乙醇提取物的效果。该提取物主要由植物醇组成,具有基因保护活性。成纤维细胞迁移减轻了高血糖的不利影响,有利于细胞增殖。在标准和高血糖环境下,破裂的成纤维细胞中的胶原蛋白含量都明显增加。萃取物对细胞外基质形成、维持和降解相关的三个基因的植物基因组学效应表明,A. cordifolia 增加了正常血糖和高血糖个体中与基质合成和维持相关的基因的表达。此外,它还降低了基质降解相关基因的表达。总之,这是第一项证明虫草对伤口愈合有效的研究,阐明了可能的成因机制,这些机制似乎是基于这种植物对伤口愈合过程中迁移和增殖阶段的基因保护作用;这些作用可能与其主要成分植物醇有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
13.20
自引率
0.00%
发文量
1274
审稿时长
3-8 weeks
期刊介绍: Oxidative Medicine and Cellular Longevity is a unique peer-reviewed, Open Access journal that publishes original research and review articles dealing with the cellular and molecular mechanisms of oxidative stress in the nervous system and related organ systems in relation to aging, immune function, vascular biology, metabolism, cellular survival and cellular longevity. Oxidative stress impacts almost all acute and chronic progressive disorders and on a cellular basis is intimately linked to aging, cardiovascular disease, cancer, immune function, metabolism and neurodegeneration. The journal fills a significant void in today’s scientific literature and serves as an international forum for the scientific community worldwide to translate pioneering “bench to bedside” research into clinical strategies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信