{"title":"Quantitative analysis of the interaction between NMDA and AMPA receptors in glutamatergic synapses based on mathematical model.","authors":"Qingchen Guo","doi":"10.1016/j.neures.2024.10.003","DOIUrl":null,"url":null,"abstract":"<p><p>NMDA and AMPA receptors are co-localized at most glutamatergic synapses, where their numbers and distribution undergo dynamic changes. Glutamate binds to both the NMDA and AMPA receptors. Initially, I investigated whether there is competition between AMPA receptors and N-methyl-D-aspartic acid (NMDA) receptors for glutamate. Subsequently, I examined how these dynamic receptor changes affect synaptic response. To test the hypothesis, a synaptic model incorporating coexisting NMDA and AMPA receptors within the postsynaptic density (PSD) was developed. During long-term potentiation (LTP) induction, the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors in the PSD increase. If there is competition for glutamate between AMPA receptors and NMDA receptors, the number of activated NMDA receptor channels will decrease. Since LTP induction relies on the activation of NMDA receptors, reducing their activation will raise the threshold for LTP induction. Consequently, the LTP of the synapse itself can establish negative feedback, preventing excessive dynamics and maintaining the stability of the neural network.</p>","PeriodicalId":19146,"journal":{"name":"Neuroscience Research","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.neures.2024.10.003","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
NMDA and AMPA receptors are co-localized at most glutamatergic synapses, where their numbers and distribution undergo dynamic changes. Glutamate binds to both the NMDA and AMPA receptors. Initially, I investigated whether there is competition between AMPA receptors and N-methyl-D-aspartic acid (NMDA) receptors for glutamate. Subsequently, I examined how these dynamic receptor changes affect synaptic response. To test the hypothesis, a synaptic model incorporating coexisting NMDA and AMPA receptors within the postsynaptic density (PSD) was developed. During long-term potentiation (LTP) induction, the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors in the PSD increase. If there is competition for glutamate between AMPA receptors and NMDA receptors, the number of activated NMDA receptor channels will decrease. Since LTP induction relies on the activation of NMDA receptors, reducing their activation will raise the threshold for LTP induction. Consequently, the LTP of the synapse itself can establish negative feedback, preventing excessive dynamics and maintaining the stability of the neural network.
期刊介绍:
The international journal publishing original full-length research articles, short communications, technical notes, and reviews on all aspects of neuroscience
Neuroscience Research is an international journal for high quality articles in all branches of neuroscience, from the molecular to the behavioral levels. The journal is published in collaboration with the Japan Neuroscience Society and is open to all contributors in the world.