Arthur Paté;Nathan Ouvrai;Quentin Consigny;Claudia Fritz
{"title":"Two Rapid Alternatives Compared to the Staircase Method for the Estimation of the Vibrotactile Perception Threshold","authors":"Arthur Paté;Nathan Ouvrai;Quentin Consigny;Claudia Fritz","doi":"10.1109/TOH.2024.3479950","DOIUrl":null,"url":null,"abstract":"Wearable vibrotactile devices seem now mature for entering the daily lives and practices of more and more users. However, vibrotactile perception can greatly differ between individuals, in terms of psychophysics and physiology, not to mention higher levels (cognitive or affective for example). Broadly-distributed and affordable vibrotactile devices hence must be adapted to each user's own perception, first of all by delivering intensity levels that are in the perceptible range of the user. This implies determining the user's own thresholds of perception, and then adapting the devices' output levels. Classical methods for the estimation of thresholds elicit too long procedures, and little is known about the reliability of other methods in the vibrotactile domain. This article focuses on two alternative methods for the estimation of amplitude thresholds in the vibrotactile modality (“increasing-intensity” and “decreasing-intensity” methods), and compares their estimations to the estimations from a staircase method. Both rapid methods result in much shorter test durations, and are found less stressful and tiring than the classic method, while showing threshold estimations that are never found to differ by more than 1.5 JND from the estimations by the classic method.","PeriodicalId":13215,"journal":{"name":"IEEE Transactions on Haptics","volume":"17 4","pages":"935-945"},"PeriodicalIF":2.4000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Haptics","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10715682/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, CYBERNETICS","Score":null,"Total":0}
引用次数: 0
Abstract
Wearable vibrotactile devices seem now mature for entering the daily lives and practices of more and more users. However, vibrotactile perception can greatly differ between individuals, in terms of psychophysics and physiology, not to mention higher levels (cognitive or affective for example). Broadly-distributed and affordable vibrotactile devices hence must be adapted to each user's own perception, first of all by delivering intensity levels that are in the perceptible range of the user. This implies determining the user's own thresholds of perception, and then adapting the devices' output levels. Classical methods for the estimation of thresholds elicit too long procedures, and little is known about the reliability of other methods in the vibrotactile domain. This article focuses on two alternative methods for the estimation of amplitude thresholds in the vibrotactile modality (“increasing-intensity” and “decreasing-intensity” methods), and compares their estimations to the estimations from a staircase method. Both rapid methods result in much shorter test durations, and are found less stressful and tiring than the classic method, while showing threshold estimations that are never found to differ by more than 1.5 JND from the estimations by the classic method.
期刊介绍:
IEEE Transactions on Haptics (ToH) is a scholarly archival journal that addresses the science, technology, and applications associated with information acquisition and object manipulation through touch. Haptic interactions relevant to this journal include all aspects of manual exploration and manipulation of objects by humans, machines and interactions between the two, performed in real, virtual, teleoperated or networked environments. Research areas of relevance to this publication include, but are not limited to, the following topics: Human haptic and multi-sensory perception and action, Aspects of motor control that explicitly pertain to human haptics, Haptic interactions via passive or active tools and machines, Devices that sense, enable, or create haptic interactions locally or at a distance, Haptic rendering and its association with graphic and auditory rendering in virtual reality, Algorithms, controls, and dynamics of haptic devices, users, and interactions between the two, Human-machine performance and safety with haptic feedback, Haptics in the context of human-computer interactions, Systems and networks using haptic devices and interactions, including multi-modal feedback, Application of the above, for example in areas such as education, rehabilitation, medicine, computer-aided design, skills training, computer games, driver controls, simulation, and visualization.