{"title":"Dual-Stripline Configuration for High-Density Routing in Chiplet Interconnects","authors":"Shekar Geedimatla;Jayaprakash Balachandran;Midhun Vysakham;Srinivas Venkataraman;Shalabh Gupta","doi":"10.1109/TSIPI.2024.3471470","DOIUrl":null,"url":null,"abstract":"Routing density is becoming in big challenge in die-to-die interconnects. In this article, we propose use of the dual-stripline configuration for routing signals in high-density interconnects. The scheme can improve the routing density by up to 33% when compared with the conventionally used stripline configuration. To address the challenges of crosstalk due to the proximity between vertically adjacent signal lines, half-pitch offset between lines on vertically adjacent layers has been proposed. The proposed routing scheme has been validated using 3-D full-wave electromagnetic simulations. The simulations show that the scheme can be used for increasing the routing density in the bunch-of-wires interface by 25%, while meeting all the bunch-of-wires channel specifications, which include eye-opening value above 68% unit interval at a bit error rate of \n<inline-formula><tex-math>$10^{-15}$</tex-math></inline-formula>\n, with data rates of 16 Gbps per wire.","PeriodicalId":100646,"journal":{"name":"IEEE Transactions on Signal and Power Integrity","volume":"3 ","pages":"151-158"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Signal and Power Integrity","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10702351/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Routing density is becoming in big challenge in die-to-die interconnects. In this article, we propose use of the dual-stripline configuration for routing signals in high-density interconnects. The scheme can improve the routing density by up to 33% when compared with the conventionally used stripline configuration. To address the challenges of crosstalk due to the proximity between vertically adjacent signal lines, half-pitch offset between lines on vertically adjacent layers has been proposed. The proposed routing scheme has been validated using 3-D full-wave electromagnetic simulations. The simulations show that the scheme can be used for increasing the routing density in the bunch-of-wires interface by 25%, while meeting all the bunch-of-wires channel specifications, which include eye-opening value above 68% unit interval at a bit error rate of
$10^{-15}$
, with data rates of 16 Gbps per wire.