Qin Ouyang , Zhenzhou Fan , Huilin Chang , Muhammad Shoaib , Quansheng Chen
{"title":"Analyzing TVB-N in snakehead by Bayesian-optimized 1D-CNN using molecular vibrational spectroscopic techniques: Near-infrared and Raman spectroscopy","authors":"Qin Ouyang , Zhenzhou Fan , Huilin Chang , Muhammad Shoaib , Quansheng Chen","doi":"10.1016/j.foodchem.2024.141701","DOIUrl":null,"url":null,"abstract":"<div><div>Total volatile basic nitrogen (TVB-N) is one of the key indicators for assessing fish freshness. This research employed near-infrared (NIR) and Raman spectroscopy methods to detect the TVB-N content in snakehead fillets. We extracted feature variables associated with TVB-N from NIR and Raman spectroscopy using Variable Crossover Point Arithmetic - Improved Reduced-Input Vector (VCPA-IRIV). Using these features, we established partial least squares (PLS) and One-dimensional Convolutional Neural Network (1D-CNN) models. Subsequently, data fusion strategies were employed to predict the TVB-N content. Notably, feature-level fusion in conjunction with Bayesian-optimized 1D-CNN, reached the best results, as evidenced by calibration and predictive correlation coefficients of 0.9677 and 0.9676 for TVB-N. These findings underscore the effectiveness of both NIR and Raman spectroscopy in evaluating fish freshness. The fusion of these two vibrational spectroscopy techniques enables a more rapid, efficient and comprehensive quantification of fish freshness.</div></div>","PeriodicalId":318,"journal":{"name":"Food Chemistry","volume":"464 ","pages":"Article 141701"},"PeriodicalIF":9.8000,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Chemistry","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S030881462403351X","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Total volatile basic nitrogen (TVB-N) is one of the key indicators for assessing fish freshness. This research employed near-infrared (NIR) and Raman spectroscopy methods to detect the TVB-N content in snakehead fillets. We extracted feature variables associated with TVB-N from NIR and Raman spectroscopy using Variable Crossover Point Arithmetic - Improved Reduced-Input Vector (VCPA-IRIV). Using these features, we established partial least squares (PLS) and One-dimensional Convolutional Neural Network (1D-CNN) models. Subsequently, data fusion strategies were employed to predict the TVB-N content. Notably, feature-level fusion in conjunction with Bayesian-optimized 1D-CNN, reached the best results, as evidenced by calibration and predictive correlation coefficients of 0.9677 and 0.9676 for TVB-N. These findings underscore the effectiveness of both NIR and Raman spectroscopy in evaluating fish freshness. The fusion of these two vibrational spectroscopy techniques enables a more rapid, efficient and comprehensive quantification of fish freshness.
期刊介绍:
Food Chemistry publishes original research papers dealing with the advancement of the chemistry and biochemistry of foods or the analytical methods/ approach used. All papers should focus on the novelty of the research carried out.