Synergistic effect of lone-pair electron and atomic distortion in introducing anomalous phonon transport in layered PbXSeF (X= Cu, Ag) compounds with low lattice thermal conductivity

IF 10 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Peng Ai , Shuwei Tang , Da Wan , Wanrong Guo , Hao Wang , Pengfei Zhang , Tuo Zheng , Shulin Bai
{"title":"Synergistic effect of lone-pair electron and atomic distortion in introducing anomalous phonon transport in layered PbXSeF (X= Cu, Ag) compounds with low lattice thermal conductivity","authors":"Peng Ai ,&nbsp;Shuwei Tang ,&nbsp;Da Wan ,&nbsp;Wanrong Guo ,&nbsp;Hao Wang ,&nbsp;Pengfei Zhang ,&nbsp;Tuo Zheng ,&nbsp;Shulin Bai","doi":"10.1016/j.mtphys.2024.101572","DOIUrl":null,"url":null,"abstract":"<div><div>Using first-principles calculations, self-consistent phonon theory and Boltzmann transport theory, the crystal structure, phonon and electronic transport, and thermoelectric (TE) properties of PbXSeF (X = Cu, Ag) compounds are comprehensive explored in the current work. The heterogeneous bonding characteristics along the in-plane and out-of-plane directions lead to low lattice thermal conductivities in PbXSeF (X = Cu, Ag) compounds. The low lattice thermal conductivity is primarily attributed to strong anharmonicity caused by the lone-pair electrons of Pb. Notably, the PbCuSeF compound, despite the lighter mass in comparison with PbAgSeF, exhibits relatively lower lattice thermal conductivity. Such finding can be attributed to the distortion introduced by Cu atom, which leads to strong quartic anharmonicity, and thereby suppressing the heat-carrying phonons through the rattling-like behavior of Cu atom. The lone-pair electrons of Pb<sup>2+</sup> and the heterogeneous bonding characteristics in PbXSeF (X = Cu, Ag) compounds contribute the multi-valley band degeneracy, resulting the decoupling of Seebeck coefficient and electrical conductivity with carrier concentration while generating in a high power factor. Our current work not only illustrates the fundamental insights into the low lattice thermal conductivity and related anomaly of layered PbXSeF (X = Cu, Ag) compounds based on the four-phonon scattering and multiple carrier scattering rates, but also highlights the anisotropic feature of electronic and thermal transport properties.</div></div>","PeriodicalId":18253,"journal":{"name":"Materials Today Physics","volume":"48 ","pages":"Article 101572"},"PeriodicalIF":10.0000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Physics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542529324002487","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Using first-principles calculations, self-consistent phonon theory and Boltzmann transport theory, the crystal structure, phonon and electronic transport, and thermoelectric (TE) properties of PbXSeF (X = Cu, Ag) compounds are comprehensive explored in the current work. The heterogeneous bonding characteristics along the in-plane and out-of-plane directions lead to low lattice thermal conductivities in PbXSeF (X = Cu, Ag) compounds. The low lattice thermal conductivity is primarily attributed to strong anharmonicity caused by the lone-pair electrons of Pb. Notably, the PbCuSeF compound, despite the lighter mass in comparison with PbAgSeF, exhibits relatively lower lattice thermal conductivity. Such finding can be attributed to the distortion introduced by Cu atom, which leads to strong quartic anharmonicity, and thereby suppressing the heat-carrying phonons through the rattling-like behavior of Cu atom. The lone-pair electrons of Pb2+ and the heterogeneous bonding characteristics in PbXSeF (X = Cu, Ag) compounds contribute the multi-valley band degeneracy, resulting the decoupling of Seebeck coefficient and electrical conductivity with carrier concentration while generating in a high power factor. Our current work not only illustrates the fundamental insights into the low lattice thermal conductivity and related anomaly of layered PbXSeF (X = Cu, Ag) compounds based on the four-phonon scattering and multiple carrier scattering rates, but also highlights the anisotropic feature of electronic and thermal transport properties.

Abstract Image

Abstract Image

孤对电子和原子畸变在具有低晶格热导率的层状 PbXSeF(X= 铜、银)化合物中引入反常声子输运的协同效应
本研究利用第一原理计算、自洽声子理论和玻尔兹曼输运理论,全面探讨了 PbXSeF(X = 铜、银)化合物的晶体结构、声子和电子输运以及热电(TE)特性。面内和面外方向的异质成键特性导致 PbXSeF (X = Cu, Ag) 复合物具有较低的晶格热导率。进一步的评估表明,超低晶格热导率主要归因于 Pb2+ 原子的单对电子引起的强非谐性。值得注意的是,尽管 PbCuSeF 复合物的质量比 PbAgSeF 轻,但其晶格热导率却相对较低。这一发现可归因于铜原子引入的畸变,畸变导致了强烈的四次方非谐波,从而通过铜原子的类似振荡行为抑制了载热声子。在 PbXSeF(X = Cu、Ag)化合物中,铅原子的孤对电子和异质成键特性导致了多谷带退化,从而使塞贝克系数和电导率与载流子浓度脱钩,同时产生高功率因数。我们目前的研究工作不仅基于四声子散射和多载流子散射率,从根本上揭示了层状 PbXSeF(X = 铜、银)化合物的低晶格热导率和相关异常现象,而且突出了电子和热传输特性的各向异性特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Today Physics
Materials Today Physics Materials Science-General Materials Science
CiteScore
14.00
自引率
7.80%
发文量
284
审稿时长
15 days
期刊介绍: Materials Today Physics is a multi-disciplinary journal focused on the physics of materials, encompassing both the physical properties and materials synthesis. Operating at the interface of physics and materials science, this journal covers one of the largest and most dynamic fields within physical science. The forefront research in materials physics is driving advancements in new materials, uncovering new physics, and fostering novel applications at an unprecedented pace.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信