Rational design of MnCoGe alloys for enhanced magnetocaloric performance and reduced thermal hysteresis

IF 10 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Rongcheng Li , Chenghao Xie , Yicheng Wang , Bowen Jin , Jiushun Zhu , Xinfeng Tang , Gangjian Tan
{"title":"Rational design of MnCoGe alloys for enhanced magnetocaloric performance and reduced thermal hysteresis","authors":"Rongcheng Li ,&nbsp;Chenghao Xie ,&nbsp;Yicheng Wang ,&nbsp;Bowen Jin ,&nbsp;Jiushun Zhu ,&nbsp;Xinfeng Tang ,&nbsp;Gangjian Tan","doi":"10.1016/j.mtphys.2024.101573","DOIUrl":null,"url":null,"abstract":"<div><div>MnCoGe alloys are widely recognized as an important family of rare-earth-free magnetocaloric materials by engineering its magnetostructural coupling for giant entropy changes. However, its practicability for magnetic refrigeration is largely hindered by the large thermal hysteresis. In this work, we show that the co-doped MnCoGe compound, namely Mn<sub>0.95</sub>Cu<sub>0.03</sub>CoGe with 2 both mol% Mn vacancies and 3 mol% Cu-doping for Mn, displays a maximum entropy change of 29.0 J kg<sup>−1</sup>K<sup>−1</sup> at 295 K under a magnetic field of 5 T, together with a relative cooling power as high as 314.5 J kg<sup>−1</sup> and a record low thermal hysteresis of 16 K. The co-doping strategy in MnCoGe finely tunes the structural transition temperature within the range of Curie temperature window, leading to a strong magnetostructural coupling and giant magnetocaloric effect. Meanwhile, Mn-deficiency and Cu-doping considerably reduce the energy difference between martensitic and austenitic MnCoGe, rendering a minimal thermal hysteresis. Our co-doped MnCoGe alloys are robust candidates for near-room-temperature magnetic refrigeration.</div></div>","PeriodicalId":18253,"journal":{"name":"Materials Today Physics","volume":"48 ","pages":"Article 101573"},"PeriodicalIF":10.0000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Physics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542529324002499","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

MnCoGe alloys are widely recognized as an important family of rare-earth-free magnetocaloric materials by engineering its magnetostructural coupling for giant entropy changes. However, its practicability for magnetic refrigeration is largely hindered by the large thermal hysteresis. In this work, we show that the co-doped MnCoGe compound, namely Mn0.95Cu0.03CoGe with 2 both mol% Mn vacancies and 3 mol% Cu-doping for Mn, displays a maximum entropy change of 29.0 J kg−1K−1 at 295 K under a magnetic field of 5 T, together with a relative cooling power as high as 314.5 J kg−1 and a record low thermal hysteresis of 16 K. The co-doping strategy in MnCoGe finely tunes the structural transition temperature within the range of Curie temperature window, leading to a strong magnetostructural coupling and giant magnetocaloric effect. Meanwhile, Mn-deficiency and Cu-doping considerably reduce the energy difference between martensitic and austenitic MnCoGe, rendering a minimal thermal hysteresis. Our co-doped MnCoGe alloys are robust candidates for near-room-temperature magnetic refrigeration.
合理设计锰钴锗合金以提高磁致性能并减少热滞后
钴锗锰合金通过磁结构耦合作用产生巨大的熵变,被广泛认为是重要的无稀土磁致冷材料系列。然而,它在磁制冷方面的实用性在很大程度上受到大热滞后的阻碍。在这项研究中,我们发现共掺杂的 MnCoGe 化合物(即 Mn0.95Cu0.03CoGe,锰空位为 2 mol%,掺杂铜的锰含量为 3 mol%)在 5 T 的磁场下于 295 K 时的最大熵变为 29.0 J kg-1K-1,相对制冷功率高达 314.锰钴锗中的共掺杂策略在居里温度窗口范围内对结构转变温度进行了微调,从而产生了强大的磁结构耦合和巨大的磁致效应。同时,缺锰和掺铜大大降低了马氏体和奥氏体锰钴锗之间的能量差,使热滞最小。我们的共掺杂锰钴锗合金是近室温磁制冷的可靠候选材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Today Physics
Materials Today Physics Materials Science-General Materials Science
CiteScore
14.00
自引率
7.80%
发文量
284
审稿时长
15 days
期刊介绍: Materials Today Physics is a multi-disciplinary journal focused on the physics of materials, encompassing both the physical properties and materials synthesis. Operating at the interface of physics and materials science, this journal covers one of the largest and most dynamic fields within physical science. The forefront research in materials physics is driving advancements in new materials, uncovering new physics, and fostering novel applications at an unprecedented pace.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信