Near stoichiometric lithium niobate crystal with dramatically enhanced piezoelectric performance for high-temperature acceleration sensing†

IF 5.7 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Guoliang Wang, Fulei Wang, Xi Gao, Dongzhou Wang, Wei Song, Yanlu Li, Xueliang Liu, Yuanhua Sang, Fapeng Yu and Xian Zhao
{"title":"Near stoichiometric lithium niobate crystal with dramatically enhanced piezoelectric performance for high-temperature acceleration sensing†","authors":"Guoliang Wang, Fulei Wang, Xi Gao, Dongzhou Wang, Wei Song, Yanlu Li, Xueliang Liu, Yuanhua Sang, Fapeng Yu and Xian Zhao","doi":"10.1039/D4TC02466D","DOIUrl":null,"url":null,"abstract":"<p >Lithium niobate (LN) is a multifunctional crystal with excellent piezoelectric properties, making it a potential candidate for piezoelectric sensing applications. In this study, the mechanism of the discrepancies of piezoelectric properties between near stoichiometric lithium niobate (NSLN) and congruent lithium niobate (CLN) were probed using Raman spectrum, first principles calculations and single crystal X-ray diffraction (XRD), where the V<small><sup>−</sup></small><small><sub>Li</sub></small> defect demonstrated a significant impact on the distortion of the NbO<small><sub>6</sub></small> octahedron, which in turn affected the piezoelectric properties of the LN crystal. The NSLN crystal exhibited a strong performance, with high piezoelectric coefficients <em>d</em><small><sub>15</sub></small> an<em>d d</em><small><sub>22</sub></small> on the orders of 77.6 pC N<small><sup>−1</sup></small> and 22.8 pC N<small><sup>−1</sup></small>, respectively, showing increases of 17.4% and 18.1% over the CLN crystal, and highlighting its enhanced piezoelectric characteristics. Finally, temperature-dependent behaviours of the electro-elastic constants for the NSLN and CLN crystals were discussed. The high-temperature piezoelectric performance of NSLN crystal was evaluated utilizing a prototype of shear-mode acceleration sensor, demonstrating remarkable sensing performance up to 650 °C with good temperature stability (sensitivity variation &lt;5%).</p>","PeriodicalId":84,"journal":{"name":"Journal of Materials Chemistry C","volume":null,"pages":null},"PeriodicalIF":5.7000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/tc/d4tc02466d","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Lithium niobate (LN) is a multifunctional crystal with excellent piezoelectric properties, making it a potential candidate for piezoelectric sensing applications. In this study, the mechanism of the discrepancies of piezoelectric properties between near stoichiometric lithium niobate (NSLN) and congruent lithium niobate (CLN) were probed using Raman spectrum, first principles calculations and single crystal X-ray diffraction (XRD), where the VLi defect demonstrated a significant impact on the distortion of the NbO6 octahedron, which in turn affected the piezoelectric properties of the LN crystal. The NSLN crystal exhibited a strong performance, with high piezoelectric coefficients d15 and d22 on the orders of 77.6 pC N−1 and 22.8 pC N−1, respectively, showing increases of 17.4% and 18.1% over the CLN crystal, and highlighting its enhanced piezoelectric characteristics. Finally, temperature-dependent behaviours of the electro-elastic constants for the NSLN and CLN crystals were discussed. The high-temperature piezoelectric performance of NSLN crystal was evaluated utilizing a prototype of shear-mode acceleration sensor, demonstrating remarkable sensing performance up to 650 °C with good temperature stability (sensitivity variation <5%).

Abstract Image

用于高温加速度传感的近化学计量铌酸锂晶体具有显著增强的压电性能†。
铌酸锂(LN)是一种多功能晶体,具有优异的压电特性,是压电传感应用的潜在候选材料。本研究利用拉曼光谱、第一性原理计算和单晶 X 射线衍射 (XRD) 等方法探究了近化学计量铌酸锂 (NSLN) 和全等铌酸锂 (CLN) 压电特性差异的机理,其中 V-Li 缺陷对 NbO6 八面体的畸变产生了显著影响,进而影响了铌酸锂晶体的压电特性。NSLN 晶体表现出很强的性能,其压电系数 d15 和 d22 分别高达 77.6 pC N-1 和 22.8 pC N-1,比 CLN 晶体分别提高了 17.4% 和 18.1%,凸显了其增强的压电特性。最后,讨论了 NSLN 和 CLN 晶体的电弹性常数随温度变化的行为。利用剪切模式加速度传感器原型对 NSLN 晶体的高温压电性能进行了评估,结果表明其传感性能高达 650 °C,且具有良好的温度稳定性(灵敏度变化率为 5%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Materials Chemistry C
Journal of Materials Chemistry C MATERIALS SCIENCE, MULTIDISCIPLINARY-PHYSICS, APPLIED
CiteScore
10.80
自引率
6.20%
发文量
1468
期刊介绍: The Journal of Materials Chemistry is divided into three distinct sections, A, B, and C, each catering to specific applications of the materials under study: Journal of Materials Chemistry A focuses primarily on materials intended for applications in energy and sustainability. Journal of Materials Chemistry B specializes in materials designed for applications in biology and medicine. Journal of Materials Chemistry C is dedicated to materials suitable for applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry C are listed below. This list is neither exhaustive nor exclusive. Bioelectronics Conductors Detectors Dielectrics Displays Ferroelectrics Lasers LEDs Lighting Liquid crystals Memory Metamaterials Multiferroics Photonics Photovoltaics Semiconductors Sensors Single molecule conductors Spintronics Superconductors Thermoelectrics Topological insulators Transistors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信