Multiscale synergetic bandgap/structure engineering for the construction of full-spectrum-responsive heterostructured MoS2/SnS2 photocatalyst†

IF 5.7 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Wenjie Zhao, Jinyan Liu, Weiye Hou, Zhe Zhang, Xinrui Chen, Xianghua Zeng and Weiwei Xia
{"title":"Multiscale synergetic bandgap/structure engineering for the construction of full-spectrum-responsive heterostructured MoS2/SnS2 photocatalyst†","authors":"Wenjie Zhao, Jinyan Liu, Weiye Hou, Zhe Zhang, Xinrui Chen, Xianghua Zeng and Weiwei Xia","doi":"10.1039/D4TC03035D","DOIUrl":null,"url":null,"abstract":"<p >A 2D-MoS<small><sub>2</sub></small>/2D-SnS<small><sub>2</sub></small> photocatalyst with a van der Waals (vdW) heterojunction has been prepared in this work by the self-assembly of MoS<small><sub>2</sub></small> nanosheets on the SnS<small><sub>2</sub></small> microflake surface. The multi-scale micro-nano hierarchical structure of MoS<small><sub>2</sub></small> with a narrow bandgap (1.27 eV) exhibits an obvious photothermal effect and significantly enhanced light absorption ability in the wide wavelength range of 200–2000 nm. Both experimental investigation and corresponding simulations based on the density functional theory demonstrate that the vdW interaction and internal electric field between MoS<small><sub>2</sub></small> and SnS<small><sub>2</sub></small> favor direct Z-scheme charge separation and transportation effectively. As a result, the optimized MoS<small><sub>2</sub></small>/SnS<small><sub>2</sub></small> Z-scheme heterojunction photocatalyst with full-spectrum response displays excellent photocatalytic CO<small><sub>2</sub></small> reduction performance. In particular, the MoS<small><sub>2</sub></small>/SnS<small><sub>2</sub></small> photocatalyst was able to maintain excellent photocatalytic CO<small><sub>2</sub></small> reduction performance under NIR light irradiation at 880 nm and achieved a maximum CO yield of 0.033 mmol cm<small><sup>−2</sup></small> h<small><sup>−1</sup></small> when the laser output power reached 20 W. This work may provide valuable guidance for the construction of vdW Z-scheme heterojunction photocatalysts for high-efficiency photocatalytic CO<small><sub>2</sub></small> reduction and effective solar light utilization.</p>","PeriodicalId":84,"journal":{"name":"Journal of Materials Chemistry C","volume":null,"pages":null},"PeriodicalIF":5.7000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/tc/d4tc03035d","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

A 2D-MoS2/2D-SnS2 photocatalyst with a van der Waals (vdW) heterojunction has been prepared in this work by the self-assembly of MoS2 nanosheets on the SnS2 microflake surface. The multi-scale micro-nano hierarchical structure of MoS2 with a narrow bandgap (1.27 eV) exhibits an obvious photothermal effect and significantly enhanced light absorption ability in the wide wavelength range of 200–2000 nm. Both experimental investigation and corresponding simulations based on the density functional theory demonstrate that the vdW interaction and internal electric field between MoS2 and SnS2 favor direct Z-scheme charge separation and transportation effectively. As a result, the optimized MoS2/SnS2 Z-scheme heterojunction photocatalyst with full-spectrum response displays excellent photocatalytic CO2 reduction performance. In particular, the MoS2/SnS2 photocatalyst was able to maintain excellent photocatalytic CO2 reduction performance under NIR light irradiation at 880 nm and achieved a maximum CO yield of 0.033 mmol cm−2 h−1 when the laser output power reached 20 W. This work may provide valuable guidance for the construction of vdW Z-scheme heterojunction photocatalysts for high-efficiency photocatalytic CO2 reduction and effective solar light utilization.

Abstract Image

用于构建全光谱响应型异质结构 MoS2/SnS2 光催化剂的多尺度协同带隙/结构工程†。
本研究通过在 SnS2 微薄片表面自组装 MoS2 纳米片,制备了一种具有范德华(vdW)异质结的 2D-MoS2/2D-SnS2 光催化剂。这种具有窄带隙(1.27 eV)的多尺度微纳分层结构的 MoS2 具有明显的光热效应,并在 200-2000 nm 的宽波长范围内显著增强了光吸收能力。实验研究和基于密度泛函理论的相应模拟都表明,MoS2 和 SnS2 之间的 vdW 相互作用和内部电场有利于 Z 型电荷的直接分离和有效传输。因此,经过优化的具有全光谱响应的 MoS2/SnS2 Z 型异质结光催化剂显示出优异的光催化还原 CO2 性能。特别是在 880 纳米近红外光照射下,MoS2/SnS2 光催化剂仍能保持优异的光催化还原 CO2 性能,当激光输出功率达到 20 W 时,CO 产率最高可达 0.033 mmol cm-2 h-1。这项工作可为构建 vdW Z 型异质结光催化剂以实现高效光催化还原 CO2 和有效利用太阳光提供有价值的指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Materials Chemistry C
Journal of Materials Chemistry C MATERIALS SCIENCE, MULTIDISCIPLINARY-PHYSICS, APPLIED
CiteScore
10.80
自引率
6.20%
发文量
1468
期刊介绍: The Journal of Materials Chemistry is divided into three distinct sections, A, B, and C, each catering to specific applications of the materials under study: Journal of Materials Chemistry A focuses primarily on materials intended for applications in energy and sustainability. Journal of Materials Chemistry B specializes in materials designed for applications in biology and medicine. Journal of Materials Chemistry C is dedicated to materials suitable for applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry C are listed below. This list is neither exhaustive nor exclusive. Bioelectronics Conductors Detectors Dielectrics Displays Ferroelectrics Lasers LEDs Lighting Liquid crystals Memory Metamaterials Multiferroics Photonics Photovoltaics Semiconductors Sensors Single molecule conductors Spintronics Superconductors Thermoelectrics Topological insulators Transistors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信