{"title":"A dynamic importance function for accidental scenarios generation by RESTART in the computational risk assessment of cyber-physical infrastructures","authors":"","doi":"10.1016/j.ress.2024.110538","DOIUrl":null,"url":null,"abstract":"<div><div>The Computational Risk Assessment (CRA) of Cyber-Physical Systems (CPSs) calls for the analysis of accidental scenarios emerging from the complexities and interdependencies typical of CPSs. Generating these scenarios via crude Monte Carlo Simulation (MCS) is impractical due to the high computational demand of simulation codes of CPSs, considering the combinatorial number of possible scenarios. In this paper, we tailor the use of Repetitive Simulation Trials After Reaching Thresholds (RESTART), a rare-event simulation method of literature, to efficiently generate relevant accidental scenarios. The tailored RESTART is guided by a dynamic Importance Function (IF) originally introduced here to dynamically characterize the relevance of the scenarios with reference to the current topology of the CPS and the susceptibility of its components. Two case studies of increasing complexity are considered: a single power grid and a CPS consisting of an Integrated Power and Telecommunication (IP&TLC) infrastructure. Results show that RESTART mines out more relevant scenarios than crude MCS for a number of different IFs based on vulnerability metrics of literature, and thus particularly efficiently when the novel IF is adopted.</div></div>","PeriodicalId":54500,"journal":{"name":"Reliability Engineering & System Safety","volume":null,"pages":null},"PeriodicalIF":9.4000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reliability Engineering & System Safety","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0951832024006100","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0
Abstract
The Computational Risk Assessment (CRA) of Cyber-Physical Systems (CPSs) calls for the analysis of accidental scenarios emerging from the complexities and interdependencies typical of CPSs. Generating these scenarios via crude Monte Carlo Simulation (MCS) is impractical due to the high computational demand of simulation codes of CPSs, considering the combinatorial number of possible scenarios. In this paper, we tailor the use of Repetitive Simulation Trials After Reaching Thresholds (RESTART), a rare-event simulation method of literature, to efficiently generate relevant accidental scenarios. The tailored RESTART is guided by a dynamic Importance Function (IF) originally introduced here to dynamically characterize the relevance of the scenarios with reference to the current topology of the CPS and the susceptibility of its components. Two case studies of increasing complexity are considered: a single power grid and a CPS consisting of an Integrated Power and Telecommunication (IP&TLC) infrastructure. Results show that RESTART mines out more relevant scenarios than crude MCS for a number of different IFs based on vulnerability metrics of literature, and thus particularly efficiently when the novel IF is adopted.
期刊介绍:
Elsevier publishes Reliability Engineering & System Safety in association with the European Safety and Reliability Association and the Safety Engineering and Risk Analysis Division. The international journal is devoted to developing and applying methods to enhance the safety and reliability of complex technological systems, like nuclear power plants, chemical plants, hazardous waste facilities, space systems, offshore and maritime systems, transportation systems, constructed infrastructure, and manufacturing plants. The journal normally publishes only articles that involve the analysis of substantive problems related to the reliability of complex systems or present techniques and/or theoretical results that have a discernable relationship to the solution of such problems. An important aim is to balance academic material and practical applications.