Toward Fine-Grained Partitioning of Low-Level SRAM Caches for Emerging 3D-IC Designs

IF 2 Q3 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Sudipta Das;Bhawana Kumari;Siva Satyendra Sahoo;Yukai Chen;James Myers;Dragomir Milojevic;Dwaipayan Biswas;Julien Ryckaert
{"title":"Toward Fine-Grained Partitioning of Low-Level SRAM Caches for Emerging 3D-IC Designs","authors":"Sudipta Das;Bhawana Kumari;Siva Satyendra Sahoo;Yukai Chen;James Myers;Dragomir Milojevic;Dwaipayan Biswas;Julien Ryckaert","doi":"10.1109/JXCDC.2024.3468386","DOIUrl":null,"url":null,"abstract":"Scaling on-chip memory capacity is one of the primary approaches to mitigate memory wall bottlenecks. Various 2.5-D/3-D integration schemes, leveraging novel partitioning, are being actively explored to improve system performance. However, fine-grained functional partitioning of memory macros is not widely reported. As static RAM (SRAM) scaling stagnates with emerging CMOS logic roadmap, we propose a partitioning of low-level (faster access) caches in 3-D using an array under CMOS (AuC) technology paradigm. Our study focuses on partitioning and optimization of SRAM bit-cells and peripheral circuits, enabling heterogeneous integration, achieving up to 12% higher operating frequency with 50% leakage power reduction in the memory macros. Applied on a 64-bit mobile system-on-chip (SoC) CPU core, we achieve up to 60% higher energy efficiency compared with 2-D baseline and 14% increase in operating frequency compared with standard memory-on-logic 3-D partitioning scheme.","PeriodicalId":54149,"journal":{"name":"IEEE Journal on Exploratory Solid-State Computational Devices and Circuits","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10695147","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal on Exploratory Solid-State Computational Devices and Circuits","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10695147/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

Scaling on-chip memory capacity is one of the primary approaches to mitigate memory wall bottlenecks. Various 2.5-D/3-D integration schemes, leveraging novel partitioning, are being actively explored to improve system performance. However, fine-grained functional partitioning of memory macros is not widely reported. As static RAM (SRAM) scaling stagnates with emerging CMOS logic roadmap, we propose a partitioning of low-level (faster access) caches in 3-D using an array under CMOS (AuC) technology paradigm. Our study focuses on partitioning and optimization of SRAM bit-cells and peripheral circuits, enabling heterogeneous integration, achieving up to 12% higher operating frequency with 50% leakage power reduction in the memory macros. Applied on a 64-bit mobile system-on-chip (SoC) CPU core, we achieve up to 60% higher energy efficiency compared with 2-D baseline and 14% increase in operating frequency compared with standard memory-on-logic 3-D partitioning scheme.
为新兴 3D-IC 设计实现低级 SRAM 缓存的精细分区
扩大芯片内存容量是缓解内存墙瓶颈的主要方法之一。目前正在积极探索利用新型分区的各种 2.5-D/3-D 集成方案,以提高系统性能。然而,对内存宏进行细粒度功能分区的报道并不多见。随着新兴 CMOS 逻辑路线图的出现,静态 RAM (SRAM) 的扩展停滞不前,因此我们提出了利用 CMOS (AuC) 技术范例下的阵列对低级(访问速度更快)高速缓存进行三维分区的方案。我们的研究重点是对 SRAM 位元组和外围电路进行分区和优化,从而实现异构集成,将内存宏的工作频率提高 12%,漏电功率降低 50%。在应用于 64 位移动片上系统 (SoC) CPU 内核时,与 2-D 基线相比,我们实现了高达 60% 的能效提升,与标准逻辑存储器 3-D 分区方案相比,工作频率提高了 14%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.00
自引率
4.20%
发文量
11
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信