Cayley transform for Toeplitz and dual matrices

IF 1 3区 数学 Q1 MATHEMATICS
Tikesh Verma , Debasisha Mishra , Michael Tsatsomeros
{"title":"Cayley transform for Toeplitz and dual matrices","authors":"Tikesh Verma ,&nbsp;Debasisha Mishra ,&nbsp;Michael Tsatsomeros","doi":"10.1016/j.laa.2024.10.007","DOIUrl":null,"url":null,"abstract":"<div><div>Let an <span><math><mi>n</mi><mo>×</mo><mi>n</mi></math></span> complex matrix <em>A</em> be such that <span><math><mi>I</mi><mo>+</mo><mi>A</mi></math></span> is invertible. The Cayley transform of <em>A</em>, denoted by <span><math><mi>C</mi><mo>(</mo><mi>A</mi><mo>)</mo></math></span>, is defined as<span><span><span><math><mi>C</mi><mo>(</mo><mi>A</mi><mo>)</mo><mo>=</mo><msup><mrow><mo>(</mo><mi>I</mi><mo>+</mo><mi>A</mi><mo>)</mo></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>(</mo><mi>I</mi><mo>−</mo><mi>A</mi><mo>)</mo><mo>.</mo></math></span></span></span> Fallat and Tsatsomeros (2002) <span><span>[5]</span></span> and Mondal et al. (2024) <span><span>[15]</span></span> studied the Cayley transform of a matrix <em>A</em> in the context of P-matrices, H-matrices, M-matrices, totally positive matrices, positive definite matrices, almost skew-Hermitian matrices, and semipositive matrices. In this paper, the investigation of the Cayley transform is continued for Toeplitz matrices, circulant matrices, unipotent matrices, and dual matrices. An expression of the Cayley transform for dual matrices is established. It is shown that the Cayley transform of a dual symmetric matrix is always a dual symmetric matrix. The Cayley transform of a dual skew-symmetric matrix is discussed. The results are illustrated with examples.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"703 ","pages":"Pages 627-644"},"PeriodicalIF":1.0000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024379524003860","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let an n×n complex matrix A be such that I+A is invertible. The Cayley transform of A, denoted by C(A), is defined asC(A)=(I+A)1(IA). Fallat and Tsatsomeros (2002) [5] and Mondal et al. (2024) [15] studied the Cayley transform of a matrix A in the context of P-matrices, H-matrices, M-matrices, totally positive matrices, positive definite matrices, almost skew-Hermitian matrices, and semipositive matrices. In this paper, the investigation of the Cayley transform is continued for Toeplitz matrices, circulant matrices, unipotent matrices, and dual matrices. An expression of the Cayley transform for dual matrices is established. It is shown that the Cayley transform of a dual symmetric matrix is always a dual symmetric matrix. The Cayley transform of a dual skew-symmetric matrix is discussed. The results are illustrated with examples.
托普利兹矩阵和对偶矩阵的 Cayley 变换
设 n×n 复矩阵 A 的 I+A 是可逆矩阵。A 的 Cayley 变换(用 C(A) 表示)定义为:C(A)=(I+A)-1(I-A)。Fallat 和 Tsatsomeros(2002)[5] 以及 Mondal 等人(2024)[15] 在 P 矩阵、H 矩阵、M 矩阵、全正矩阵、正定矩阵、几乎偏赫米特矩阵和半正定矩阵的背景下研究了矩阵 A 的 Cayley 变换。本文将继续研究托普利兹矩阵、循环矩阵、单能矩阵和对偶矩阵的 Cayley 变换。本文建立了对偶矩阵的 Cayley 变换表达式。证明了对偶对称矩阵的 Cayley 变换总是对偶对称矩阵。讨论了对偶倾斜对称矩阵的 Cayley 变换。并用实例对结果进行了说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.20
自引率
9.10%
发文量
333
审稿时长
13.8 months
期刊介绍: Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信