Rasmus Fromsejer, Bjørn Maribo-Mogensen, Georgios M. Kontogeorgis, Xiaodong Liang
{"title":"Accurate formation enthalpies of solids using reaction networks","authors":"Rasmus Fromsejer, Bjørn Maribo-Mogensen, Georgios M. Kontogeorgis, Xiaodong Liang","doi":"10.1038/s41524-024-01404-5","DOIUrl":null,"url":null,"abstract":"<p>Crystalline solids play a fundamental role in a host of materials and technologies, ranging from pharmaceuticals to renewable energy. The thermodynamic properties of these solids are crucial determinants of their stability and therefore their behavior. The advent of large density functional theory databases with properties of solids has stimulated research on predictive methods for their thermodynamic properties, especially for the enthalpy of formation Δ<sub>f</sub><i>H</i>. Increasingly sophisticated artificial intelligence and machine learning (ML) models have primarily driven development in this field in recent years. However, these models can suffer from lack of generalizability and poor interpretability. In this work, we explore a different route and develop and evaluate a framework for the application of reaction network (RN) theory to the prediction of Δ<sub>f</sub><i>H</i> of crystalline solids. For an experimental dataset of 1550 compounds we are able to obtain a mean absolute error w.r.t Δ<sub>f</sub><i>H</i> of 29.6 meV atom<sup>−1</sup> using the RN approach. This performance is better than existing ML-based predictive methods and close to the experimental uncertainty. Moreover, we show that the RN framework allows for straightforward estimation of the uncertainty of the predictions.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"9 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-024-01404-5","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Crystalline solids play a fundamental role in a host of materials and technologies, ranging from pharmaceuticals to renewable energy. The thermodynamic properties of these solids are crucial determinants of their stability and therefore their behavior. The advent of large density functional theory databases with properties of solids has stimulated research on predictive methods for their thermodynamic properties, especially for the enthalpy of formation ΔfH. Increasingly sophisticated artificial intelligence and machine learning (ML) models have primarily driven development in this field in recent years. However, these models can suffer from lack of generalizability and poor interpretability. In this work, we explore a different route and develop and evaluate a framework for the application of reaction network (RN) theory to the prediction of ΔfH of crystalline solids. For an experimental dataset of 1550 compounds we are able to obtain a mean absolute error w.r.t ΔfH of 29.6 meV atom−1 using the RN approach. This performance is better than existing ML-based predictive methods and close to the experimental uncertainty. Moreover, we show that the RN framework allows for straightforward estimation of the uncertainty of the predictions.
期刊介绍:
npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings.
Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.