A 14 nm MRAM-Based Multi-bit Analog In-Memory Computing With Process-Variation Calibration for 72 Macros-Based Accelerator

IF 2.2 Q3 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Sungmeen Myung;Seok-Ju Yun;Minje Kim;Wooseok Yi;Jaehyuk Lee;Jangho An;Kyoung-Rog Lee;Chang-Woo Shin;Seungchul Jung;Soonwan Kwon
{"title":"A 14 nm MRAM-Based Multi-bit Analog In-Memory Computing With Process-Variation Calibration for 72 Macros-Based Accelerator","authors":"Sungmeen Myung;Seok-Ju Yun;Minje Kim;Wooseok Yi;Jaehyuk Lee;Jangho An;Kyoung-Rog Lee;Chang-Woo Shin;Seungchul Jung;Soonwan Kwon","doi":"10.1109/LSSC.2024.3465595","DOIUrl":null,"url":null,"abstract":"This letter presents an analog in-memory computing (IMC) macro utilizing 14 nm MRAM technology. To facilitate energy-efficient high-throughput multiply accumulate (MAC) operations, a multi-bit weight is introduced using stacked magnetic tunnel junction architecture and an analog bit-parallel MAC (ABP-MAC) scheme is proposed. This approach delivers 3.3 times better TOPS/mm2 than the state-of-the-art MRAM-based IMC macro. Additionally, a comprehensive calibration technique significantly improves computational accuracy across 72 IMC macros. The proposed IMC macro achieves 18.29 TOPS/mm2 and 340.8 TOPS/W with 1-bit normalization and classification accuracy of 90.2% with the Google speech commands dataset.","PeriodicalId":13032,"journal":{"name":"IEEE Solid-State Circuits Letters","volume":"7 ","pages":"295-298"},"PeriodicalIF":2.2000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Solid-State Circuits Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10685516/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

This letter presents an analog in-memory computing (IMC) macro utilizing 14 nm MRAM technology. To facilitate energy-efficient high-throughput multiply accumulate (MAC) operations, a multi-bit weight is introduced using stacked magnetic tunnel junction architecture and an analog bit-parallel MAC (ABP-MAC) scheme is proposed. This approach delivers 3.3 times better TOPS/mm2 than the state-of-the-art MRAM-based IMC macro. Additionally, a comprehensive calibration technique significantly improves computational accuracy across 72 IMC macros. The proposed IMC macro achieves 18.29 TOPS/mm2 and 340.8 TOPS/W with 1-bit normalization and classification accuracy of 90.2% with the Google speech commands dataset.
基于 14 纳米 MRAM 的多比特模拟内存计算,可对 72 个基于宏的加速器进行过程变化校准
本文介绍了一种利用 14 纳米 MRAM 技术的模拟内存计算 (IMC) 宏。为了促进高能效、高吞吐量的乘法累加(MAC)操作,采用堆叠式磁隧道结架构引入了多位权重,并提出了模拟位并行 MAC(ABP-MAC)方案。与最先进的基于 MRAM 的 IMC 宏相比,这种方法的 TOPS/mm2 性能提高了 3.3 倍。此外,综合校准技术显著提高了 72 个 IMC 宏的计算精度。所提出的 IMC 宏在 1 位归一化的情况下达到了 18.29 TOPS/mm2 和 340.8 TOPS/W,在谷歌语音命令数据集上的分类准确率为 90.2%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Solid-State Circuits Letters
IEEE Solid-State Circuits Letters Engineering-Electrical and Electronic Engineering
CiteScore
4.30
自引率
3.70%
发文量
52
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信