{"title":"Advancing piezoelectricity and excellent thermal stability: <001>-textured 0.75BF–0.25BT lead-free ceramics for high temperature applications","authors":"Zhangpan Shen, Jian Guo, Xiaoyi Gao, Weidong Xuan, Jiye Zhang, Dawei Wang, Jinrong Cheng, Shujun Zhang, Jianguo Chen","doi":"10.1016/j.jmat.2024.100946","DOIUrl":null,"url":null,"abstract":"There is an urgent need for piezoelectric materials possessing both high piezoelectric properties and good thermal stability to facilitate the advancement of high temperature piezoelectric devices. However, conventional strategy for enhancing piezoelectricity via chemical modifications often comes at the cost of thermal stability due to a drop in Curie temperatures. In this study, we achieved remarkable results in <001>-oriented 0.75BiFeO<sub>3</sub>–0.25BaTiO<sub>3</sub> (0.75BF–0.25BT) lead-free textured ceramics. These textured ceramics exhibit a high Curie temperatures <em>T</em><sub>c</sub> of 552 °C, large piezoelectric coefficients <em>d</em><sub>33</sub> of 265 pC/N, and exceptional piezoelectric thermal stability, with minimal variation of 8% across temperature from 25 °C to 300 °C. Compared to randomly oriented ceramics, the piezoelectric coefficient is about 2.5 times higher, marking it as one of the highest reported value for ceramics with <em>T</em><sub>c</sub> near 550 °C. The enhanced piezoelectric properties can be ascribed to improvements in both intrinsic lattice distortions and extrinsic non-180<sup>o</sup> domain motions, while the excellent piezoelectric thermal stability is attributed to the stable domain texture. These superior properties of the studied textured 0.75BF–0.25BT ceramics position them as competitive lead-free candidates for high-temperature piezoelectric applications.","PeriodicalId":16173,"journal":{"name":"Journal of Materiomics","volume":"67 1","pages":""},"PeriodicalIF":8.4000,"publicationDate":"2024-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materiomics","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jmat.2024.100946","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
There is an urgent need for piezoelectric materials possessing both high piezoelectric properties and good thermal stability to facilitate the advancement of high temperature piezoelectric devices. However, conventional strategy for enhancing piezoelectricity via chemical modifications often comes at the cost of thermal stability due to a drop in Curie temperatures. In this study, we achieved remarkable results in <001>-oriented 0.75BiFeO3–0.25BaTiO3 (0.75BF–0.25BT) lead-free textured ceramics. These textured ceramics exhibit a high Curie temperatures Tc of 552 °C, large piezoelectric coefficients d33 of 265 pC/N, and exceptional piezoelectric thermal stability, with minimal variation of 8% across temperature from 25 °C to 300 °C. Compared to randomly oriented ceramics, the piezoelectric coefficient is about 2.5 times higher, marking it as one of the highest reported value for ceramics with Tc near 550 °C. The enhanced piezoelectric properties can be ascribed to improvements in both intrinsic lattice distortions and extrinsic non-180o domain motions, while the excellent piezoelectric thermal stability is attributed to the stable domain texture. These superior properties of the studied textured 0.75BF–0.25BT ceramics position them as competitive lead-free candidates for high-temperature piezoelectric applications.
期刊介绍:
The Journal of Materiomics is a peer-reviewed open-access journal that aims to serve as a forum for the continuous dissemination of research within the field of materials science. It particularly emphasizes systematic studies on the relationships between composition, processing, structure, property, and performance of advanced materials. The journal is supported by the Chinese Ceramic Society and is indexed in SCIE and Scopus. It is commonly referred to as J Materiomics.