Intelligent classification and identification method for Conger myriaster freshness based on DWG-YOLOv8 network model

Sheng Gao, Wei Wang, Yuanmeng Lv, Chenghua Chen, Wancui Xie
{"title":"Intelligent classification and identification method for Conger myriaster freshness based on DWG-YOLOv8 network model","authors":"Sheng Gao,&nbsp;Wei Wang,&nbsp;Yuanmeng Lv,&nbsp;Chenghua Chen,&nbsp;Wancui Xie","doi":"10.1002/fbe2.12097","DOIUrl":null,"url":null,"abstract":"<p>The freshness of aquatic products is directly related to the safety and health of the people. Traditional methods of detecting the freshness of <i>Conger myriaster</i> rely on manual operations, which are labor-intensive, inefficient, and highly subjective. This paper combines computer vision and the DWG-YOLOv8 network model to establish an intelligent classification method for <i>C. myriaster</i> freshness. Through image augmentation, 484 <i>C. myriaster</i> samples were expanded to 2904 samples. The YOLOv8n model was improved by simplifying the network backbone, introducing Ghost convolution and the new DW-GhostConv, thereby reducing the number of parameters and computational load. Test results show that the recognition accuracy of the DWG-YOLOv8 model reached 98.958%, outperforming models such as ResNet18, Mobilenetv3 small, and Swin transformer v2 tiny. The model's parameter count is 16.609 K, the inference time is 57.80 ms, and the model size is only 102 KB. The research provides a reliable method for online intelligent and nondestructive detection of <i>C. myriaster</i> freshness.</p>","PeriodicalId":100544,"journal":{"name":"Food Bioengineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/fbe2.12097","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Bioengineering","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/fbe2.12097","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The freshness of aquatic products is directly related to the safety and health of the people. Traditional methods of detecting the freshness of Conger myriaster rely on manual operations, which are labor-intensive, inefficient, and highly subjective. This paper combines computer vision and the DWG-YOLOv8 network model to establish an intelligent classification method for C. myriaster freshness. Through image augmentation, 484 C. myriaster samples were expanded to 2904 samples. The YOLOv8n model was improved by simplifying the network backbone, introducing Ghost convolution and the new DW-GhostConv, thereby reducing the number of parameters and computational load. Test results show that the recognition accuracy of the DWG-YOLOv8 model reached 98.958%, outperforming models such as ResNet18, Mobilenetv3 small, and Swin transformer v2 tiny. The model's parameter count is 16.609 K, the inference time is 57.80 ms, and the model size is only 102 KB. The research provides a reliable method for online intelligent and nondestructive detection of C. myriaster freshness.

Abstract Image

基于 DWG-YOLOv8 网络模型的丛枝花椰菜新鲜度智能分类与识别方法
水产品的新鲜度直接关系到人们的安全和健康。传统的蛤蚧鲜度检测方法主要依靠人工操作,劳动强度大、效率低、主观性强。本文将计算机视觉与 DWG-YOLOv8 网络模型相结合,建立了一种智能化的聪耳草新鲜度分类方法。通过图像增强,484 个 C. myriaster 样本被扩展为 2904 个样本。通过简化网络骨干、引入 Ghost 卷积和新的 DW-GhostConv 对 YOLOv8n 模型进行了改进,从而减少了参数数量和计算负荷。测试结果表明,DWG-YOLOv8 模型的识别准确率达到 98.958%,优于 ResNet18、Mobilenetv3 small 和 Swin transformer v2 tiny 等模型。该模型的参数数为 16.609 K,推理时间为 57.80 ms,模型大小仅为 102 KB。该研究为在线智能无损检测桔梗的新鲜度提供了一种可靠的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信