Based on electronic nose and multi-omics, investigate the dynamic changes of volatile and non-volatile organic compounds in waxy wheat Baijiu from different years
Ping Zhang , Jun-na Liu , Han-xue Li , Yi Ma , Zhi-en Pu , Li Li , Liu-bin Huang , Shan Zhang , Xu-qin Wang , Guo-fei Jiang , Ling-yuan Zhang , Yu-tao Bai , Peng Qin
{"title":"Based on electronic nose and multi-omics, investigate the dynamic changes of volatile and non-volatile organic compounds in waxy wheat Baijiu from different years","authors":"Ping Zhang , Jun-na Liu , Han-xue Li , Yi Ma , Zhi-en Pu , Li Li , Liu-bin Huang , Shan Zhang , Xu-qin Wang , Guo-fei Jiang , Ling-yuan Zhang , Yu-tao Bai , Peng Qin","doi":"10.1016/j.fochx.2024.101864","DOIUrl":null,"url":null,"abstract":"<div><div>Chinese baijiu is highly regarded for its unique flavor, and a variety of crops can be utilized as raw materials in its production. Waxy crops are essential ingredients in the brewing of high-quality baijiu; however, there is currently no comprehensive identification of volatile organic compounds (VOCs) and non-volatile compounds (N-VOCs) in waxy wheat baijiu (WWB). This study aims to investigate the dynamic changes of VOCs and N-VOCs in WWB during several important time periods from new to aged. A total of 25 amino acids underwent changes in the samples, with numerous physiologically active beneficial amino acids showing significant accumulation after aging. Additionally, 517 VOCs changed after aging, predominantly comprising esters and terpenoids, with 72 major VOCs being identified. A total of 718 metabolites were identified in the metabolome, primarily comprising alterations in lipids, amino acids, phenolic acids, organic acids, and alkaloids. These metabolites significantly influenced the levels of amino acids and VOCs. Our study is the first to provide a comprehensive examination of these aspects of WWB, highlighting its unique advantages over other crops. We believe that this research will establish a theoretical foundation for the application of waxy wheat in the baijiu industry, improve baijiu quality, and promote the development of functional baijius.</div></div>","PeriodicalId":12334,"journal":{"name":"Food Chemistry: X","volume":"24 ","pages":"Article 101864"},"PeriodicalIF":6.5000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Chemistry: X","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590157524007521","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Chinese baijiu is highly regarded for its unique flavor, and a variety of crops can be utilized as raw materials in its production. Waxy crops are essential ingredients in the brewing of high-quality baijiu; however, there is currently no comprehensive identification of volatile organic compounds (VOCs) and non-volatile compounds (N-VOCs) in waxy wheat baijiu (WWB). This study aims to investigate the dynamic changes of VOCs and N-VOCs in WWB during several important time periods from new to aged. A total of 25 amino acids underwent changes in the samples, with numerous physiologically active beneficial amino acids showing significant accumulation after aging. Additionally, 517 VOCs changed after aging, predominantly comprising esters and terpenoids, with 72 major VOCs being identified. A total of 718 metabolites were identified in the metabolome, primarily comprising alterations in lipids, amino acids, phenolic acids, organic acids, and alkaloids. These metabolites significantly influenced the levels of amino acids and VOCs. Our study is the first to provide a comprehensive examination of these aspects of WWB, highlighting its unique advantages over other crops. We believe that this research will establish a theoretical foundation for the application of waxy wheat in the baijiu industry, improve baijiu quality, and promote the development of functional baijius.
期刊介绍:
Food Chemistry: X, one of three Open Access companion journals to Food Chemistry, follows the same aims, scope, and peer-review process. It focuses on papers advancing food and biochemistry or analytical methods, prioritizing research novelty. Manuscript evaluation considers novelty, scientific rigor, field advancement, and reader interest. Excluded are studies on food molecular sciences or disease cure/prevention. Topics include food component chemistry, bioactives, processing effects, additives, contaminants, and analytical methods. The journal welcome Analytical Papers addressing food microbiology, sensory aspects, and more, emphasizing new methods with robust validation and applicability to diverse foods or regions.