In vitro digestion and fecal fermentation behaviors of exopolysaccharide from Morchella esculenta and its impacts on hypoglycemic activity via PI3K/Akt signaling and gut microbiota modulation
Weihong Guo , Xuerui Wang , Biao Wang , Yajie Zhang , Fengyun Zhao , Yuling Qu , Liang Yao , Jianmin Yun
{"title":"In vitro digestion and fecal fermentation behaviors of exopolysaccharide from Morchella esculenta and its impacts on hypoglycemic activity via PI3K/Akt signaling and gut microbiota modulation","authors":"Weihong Guo , Xuerui Wang , Biao Wang , Yajie Zhang , Fengyun Zhao , Yuling Qu , Liang Yao , Jianmin Yun","doi":"10.1016/j.fochx.2024.101870","DOIUrl":null,"url":null,"abstract":"<div><div>This study aimed to evaluate the effects of gastrointestinal digestion on the physicochemical properties and hypoglycemic activity of extracellular polysaccharides from <em>Morchella esculenta</em> (MEPS). The results showed that the MEPS digestibility was 22.57 % after saliva-gastrointestinal digestion and only partial degradation had occurred. Contrarily, after 48 h of fecal fermentation, its molecular weight and molar ratios of the monosaccharide composition varied significantly due to being utilized by human gut microbiota, and the final fermentation rate was 76.89 %. Furthermore, the MEPS-I, the final product of saliva-gastrointestinal digestion still retained significant hypoglycemic activity, it alleviated insulin resistance and increased the IR cells glucose consumption by activating PI3K/AKT signaling pathway. MEPS-I treatment reduced the proportion of <em>Firmicutes</em> to <em>Bacteroidetes</em>, and the relative abundance of beneficial bacteria that enhanced insulin sensitivity and glucose uptake was promoted. This research can provide a theoretical basis for the further development of <em>Morchella esculenta</em> as a health functional food.</div></div>","PeriodicalId":12334,"journal":{"name":"Food Chemistry: X","volume":"24 ","pages":"Article 101870"},"PeriodicalIF":6.5000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Chemistry: X","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590157524007582","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
This study aimed to evaluate the effects of gastrointestinal digestion on the physicochemical properties and hypoglycemic activity of extracellular polysaccharides from Morchella esculenta (MEPS). The results showed that the MEPS digestibility was 22.57 % after saliva-gastrointestinal digestion and only partial degradation had occurred. Contrarily, after 48 h of fecal fermentation, its molecular weight and molar ratios of the monosaccharide composition varied significantly due to being utilized by human gut microbiota, and the final fermentation rate was 76.89 %. Furthermore, the MEPS-I, the final product of saliva-gastrointestinal digestion still retained significant hypoglycemic activity, it alleviated insulin resistance and increased the IR cells glucose consumption by activating PI3K/AKT signaling pathway. MEPS-I treatment reduced the proportion of Firmicutes to Bacteroidetes, and the relative abundance of beneficial bacteria that enhanced insulin sensitivity and glucose uptake was promoted. This research can provide a theoretical basis for the further development of Morchella esculenta as a health functional food.
期刊介绍:
Food Chemistry: X, one of three Open Access companion journals to Food Chemistry, follows the same aims, scope, and peer-review process. It focuses on papers advancing food and biochemistry or analytical methods, prioritizing research novelty. Manuscript evaluation considers novelty, scientific rigor, field advancement, and reader interest. Excluded are studies on food molecular sciences or disease cure/prevention. Topics include food component chemistry, bioactives, processing effects, additives, contaminants, and analytical methods. The journal welcome Analytical Papers addressing food microbiology, sensory aspects, and more, emphasizing new methods with robust validation and applicability to diverse foods or regions.