FreeTO - Freeform 3D topology optimization using a structured mesh with smooth boundaries in Matlab

IF 4 2区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Osezua Ibhadode , Yun-Fei Fu , Ahmed Qureshi
{"title":"FreeTO - Freeform 3D topology optimization using a structured mesh with smooth boundaries in Matlab","authors":"Osezua Ibhadode ,&nbsp;Yun-Fei Fu ,&nbsp;Ahmed Qureshi","doi":"10.1016/j.advengsoft.2024.103790","DOIUrl":null,"url":null,"abstract":"<div><div>Topology optimization has revolutionized the design of structures for various applications, particularly with the advancement of additive manufacturing. However, existing open-source codes for topology optimization have limitations, such as restricted domain initialization and lack of a CAD output after optimization. A novel open-source Matlab code, FreeTO, is presented, and it addresses these limitations by enabling the initialization of 3D arbitrary geometries and providing an STL file post-optimization. FreeTO utilizes a structured mesh and a smooth-edge (boundary) algorithm to generate smooth topological boundaries. The code is demonstrated through six practical design cases, showcasing its effectiveness in compliance minimization, compliant mechanisms, and self-supporting problems. FreeTO offers a user-friendly, all-in-one topology optimization package, making it an invaluable tool for educators, researchers, and practitioners. Future developments will focus on eliminating a few geometrical deviations in the optimized topologies, incorporating speedups, and extending the code to apply to more applications.</div></div>","PeriodicalId":50866,"journal":{"name":"Advances in Engineering Software","volume":"198 ","pages":"Article 103790"},"PeriodicalIF":4.0000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Engineering Software","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0965997824001972","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Topology optimization has revolutionized the design of structures for various applications, particularly with the advancement of additive manufacturing. However, existing open-source codes for topology optimization have limitations, such as restricted domain initialization and lack of a CAD output after optimization. A novel open-source Matlab code, FreeTO, is presented, and it addresses these limitations by enabling the initialization of 3D arbitrary geometries and providing an STL file post-optimization. FreeTO utilizes a structured mesh and a smooth-edge (boundary) algorithm to generate smooth topological boundaries. The code is demonstrated through six practical design cases, showcasing its effectiveness in compliance minimization, compliant mechanisms, and self-supporting problems. FreeTO offers a user-friendly, all-in-one topology optimization package, making it an invaluable tool for educators, researchers, and practitioners. Future developments will focus on eliminating a few geometrical deviations in the optimized topologies, incorporating speedups, and extending the code to apply to more applications.
FreeTO - 在 Matlab 中使用具有平滑边界的结构网格进行自由形态三维拓扑优化
拓扑优化彻底改变了各种应用领域的结构设计,特别是随着增材制造技术的发展。然而,现有的拓扑优化开源代码有其局限性,如域初始化受限和优化后缺乏 CAD 输出。本文介绍了一种新颖的开源 Matlab 代码 FreeTO,它通过支持三维任意几何图形的初始化和提供优化后的 STL 文件来解决这些局限性。FreeTO 利用结构化网格和平滑边缘(边界)算法生成平滑的拓扑边界。该代码通过六个实际设计案例进行了演示,展示了其在顺应性最小化、顺应机构和自支撑问题上的有效性。FreeTO 提供了用户友好的一体化拓扑优化软件包,是教育工作者、研究人员和从业人员的宝贵工具。未来的开发重点将是消除优化拓扑中的一些几何偏差,提高速度,并扩展代码以适用于更多应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Engineering Software
Advances in Engineering Software 工程技术-计算机:跨学科应用
CiteScore
7.70
自引率
4.20%
发文量
169
审稿时长
37 days
期刊介绍: The objective of this journal is to communicate recent and projected advances in computer-based engineering techniques. The fields covered include mechanical, aerospace, civil and environmental engineering, with an emphasis on research and development leading to practical problem-solving. The scope of the journal includes: • Innovative computational strategies and numerical algorithms for large-scale engineering problems • Analysis and simulation techniques and systems • Model and mesh generation • Control of the accuracy, stability and efficiency of computational process • Exploitation of new computing environments (eg distributed hetergeneous and collaborative computing) • Advanced visualization techniques, virtual environments and prototyping • Applications of AI, knowledge-based systems, computational intelligence, including fuzzy logic, neural networks and evolutionary computations • Application of object-oriented technology to engineering problems • Intelligent human computer interfaces • Design automation, multidisciplinary design and optimization • CAD, CAE and integrated process and product development systems • Quality and reliability.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信