{"title":"Powers of Karpelevič arcs and their sparsest realising matrices","authors":"Priyanka Joshi , Stephen Kirkland , Helena Šmigoc","doi":"10.1016/j.laa.2024.10.001","DOIUrl":null,"url":null,"abstract":"<div><div>The region in the complex plane containing the eigenvalues of all <span><math><mi>n</mi><mo>×</mo><mi>n</mi></math></span> stochastic matrices was described by Karpelevič in 1951, and it is since then known as the Karpelevič region. The boundary of the Karpelevič region is the union of arcs called the Karpelevič arcs. We provide a complete characterization of the Karpelevič arcs that are powers of some other Karpelevič arc. Furthermore, we find the necessary and sufficient conditions for a sparsest stochastic matrix associated with the Karpelevič arc of order <em>n</em> to be a power of another stochastic matrix.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002437952400380X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
The region in the complex plane containing the eigenvalues of all stochastic matrices was described by Karpelevič in 1951, and it is since then known as the Karpelevič region. The boundary of the Karpelevič region is the union of arcs called the Karpelevič arcs. We provide a complete characterization of the Karpelevič arcs that are powers of some other Karpelevič arc. Furthermore, we find the necessary and sufficient conditions for a sparsest stochastic matrix associated with the Karpelevič arc of order n to be a power of another stochastic matrix.
期刊介绍:
Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.