{"title":"Counting gradings on Lie algebras of block-triangular matrices","authors":"Diogo Diniz , Alex Ramos Borges , Eduardo Fonsêca","doi":"10.1016/j.laa.2024.10.002","DOIUrl":null,"url":null,"abstract":"<div><div>We study the number of isomorphism classes of gradings on Lie algebras of block-triangular matrices. Let <em>G</em> be a finite abelian group, for <span><math><mi>m</mi><mo>∈</mo><msup><mrow><mi>N</mi></mrow><mrow><mi>s</mi></mrow></msup></math></span> we determine the number <span><math><msup><mrow><mi>E</mi></mrow><mrow><mo>(</mo><mo>−</mo><mo>)</mo></mrow></msup><mo>(</mo><mi>G</mi><mo>,</mo><mi>m</mi><mo>)</mo></math></span> of isomorphism classes of elementary <em>G</em>-gradings on the Lie algebra <span><math><mi>U</mi><mi>T</mi><msup><mrow><mo>(</mo><mi>m</mi><mo>)</mo></mrow><mrow><mo>(</mo><mo>−</mo><mo>)</mo></mrow></msup></math></span> of block-triangular matrices over an algebraically closed field of characteristic zero. We study the asymptotic growth of <span><math><msup><mrow><mi>E</mi></mrow><mrow><mo>(</mo><mo>−</mo><mo>)</mo></mrow></msup><mo>(</mo><mi>G</mi><mo>,</mo><mi>m</mi><mo>)</mo></math></span> and as a consequence prove that the <span><math><msup><mrow><mi>E</mi></mrow><mrow><mo>(</mo><mo>−</mo><mo>)</mo></mrow></msup><mo>(</mo><mi>G</mi><mo>,</mo><mo>⋅</mo><mo>)</mo></math></span> determines <em>G</em> up to isomorphism. We also study the asymptotic growth of the number <span><math><msup><mrow><mi>N</mi></mrow><mrow><mo>(</mo><mo>−</mo><mo>)</mo></mrow></msup><mo>(</mo><mi>G</mi><mo>,</mo><mi>m</mi><mo>)</mo></math></span> of isomorphism classes of <em>G</em>-gradings on <span><math><mi>U</mi><mi>T</mi><msup><mrow><mo>(</mo><mi>m</mi><mo>)</mo></mrow><mrow><mo>(</mo><mo>−</mo><mo>)</mo></mrow></msup></math></span> and prove that <span><math><msup><mrow><mi>N</mi></mrow><mrow><mo>(</mo><mo>−</mo><mo>)</mo></mrow></msup><mo>(</mo><mi>G</mi><mo>,</mo><mi>m</mi><mo>)</mo><mo>)</mo><mo>∼</mo><mo>|</mo><mi>G</mi><mo>|</mo><msup><mrow><mi>E</mi></mrow><mrow><mo>(</mo><mo>−</mo><mo>)</mo></mrow></msup><mo>(</mo><mi>G</mi><mo>,</mo><mi>m</mi><mo>)</mo></math></span>.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"703 ","pages":"Pages 504-527"},"PeriodicalIF":1.0000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024379524003811","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We study the number of isomorphism classes of gradings on Lie algebras of block-triangular matrices. Let G be a finite abelian group, for we determine the number of isomorphism classes of elementary G-gradings on the Lie algebra of block-triangular matrices over an algebraically closed field of characteristic zero. We study the asymptotic growth of and as a consequence prove that the determines G up to isomorphism. We also study the asymptotic growth of the number of isomorphism classes of G-gradings on and prove that .
期刊介绍:
Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.