{"title":"Universal coacting Hopf algebra of a finite dimensional Lie-Yamaguti algebra","authors":"Saikat Goswami , Satyendra Kumar Mishra , Goutam Mukherjee","doi":"10.1016/j.laa.2024.09.017","DOIUrl":null,"url":null,"abstract":"<div><div>M. E. Sweedler first constructed a universal Hopf algebra of an algebra. It is known that the dual notions to the existing ones play a dominant role in Hopf algebra theory. Yu. I. Manin and D. Tambara introduced the dual notion of Sweedler's construction in separate works. In this paper, we construct a universal algebra for a finite-dimensional Lie-Yamaguti algebra. We demonstrate that this universal algebra possesses a bialgebra structure, leading to a universal coacting Hopf algebra for a finite-dimensional Lie-Yamaguti algebra. Additionally, we develop a representation-theoretic version of our results. As an application, we characterize the automorphism group and classify all abelian group gradings of a finite-dimensional Lie-Yamaguti algebra.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024379524003793","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
M. E. Sweedler first constructed a universal Hopf algebra of an algebra. It is known that the dual notions to the existing ones play a dominant role in Hopf algebra theory. Yu. I. Manin and D. Tambara introduced the dual notion of Sweedler's construction in separate works. In this paper, we construct a universal algebra for a finite-dimensional Lie-Yamaguti algebra. We demonstrate that this universal algebra possesses a bialgebra structure, leading to a universal coacting Hopf algebra for a finite-dimensional Lie-Yamaguti algebra. Additionally, we develop a representation-theoretic version of our results. As an application, we characterize the automorphism group and classify all abelian group gradings of a finite-dimensional Lie-Yamaguti algebra.
期刊介绍:
Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.