{"title":"A new active learning surrogate model for time- and space-dependent system reliability analysis","authors":"Hongyou Zhan, Ning-Cong Xiao","doi":"10.1016/j.ress.2024.110536","DOIUrl":null,"url":null,"abstract":"<div><div>This study introduces a novel method for time- and space-dependent system reliability analysis, integrating an active learning surrogate model with an innovative parallel updating strategy. A global Kriging model is developed to represent the signs of random samples using efficient global optimization. From a Bayesian perspective, the prediction probabilities of random sample signs within the time-space domain are calculated, and the sample with the lowest prediction probability is chosen to update the global Kriging model. The system extremum for each sample in the time-space domain is determined, and the corresponding random variables, time-space coordinates, and failure modes are selected. To further decrease iteration times, a parallel updating strategy that considers both the predicted probability and the correlation among candidate samples is proposed. Additionally, a new stopping criterion is introduced to balance accuracy and efficiency, terminating the updating process appropriately. The method's accuracy and efficiency are validated through three examples.</div></div>","PeriodicalId":54500,"journal":{"name":"Reliability Engineering & System Safety","volume":null,"pages":null},"PeriodicalIF":9.4000,"publicationDate":"2024-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reliability Engineering & System Safety","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0951832024006082","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study introduces a novel method for time- and space-dependent system reliability analysis, integrating an active learning surrogate model with an innovative parallel updating strategy. A global Kriging model is developed to represent the signs of random samples using efficient global optimization. From a Bayesian perspective, the prediction probabilities of random sample signs within the time-space domain are calculated, and the sample with the lowest prediction probability is chosen to update the global Kriging model. The system extremum for each sample in the time-space domain is determined, and the corresponding random variables, time-space coordinates, and failure modes are selected. To further decrease iteration times, a parallel updating strategy that considers both the predicted probability and the correlation among candidate samples is proposed. Additionally, a new stopping criterion is introduced to balance accuracy and efficiency, terminating the updating process appropriately. The method's accuracy and efficiency are validated through three examples.
期刊介绍:
Elsevier publishes Reliability Engineering & System Safety in association with the European Safety and Reliability Association and the Safety Engineering and Risk Analysis Division. The international journal is devoted to developing and applying methods to enhance the safety and reliability of complex technological systems, like nuclear power plants, chemical plants, hazardous waste facilities, space systems, offshore and maritime systems, transportation systems, constructed infrastructure, and manufacturing plants. The journal normally publishes only articles that involve the analysis of substantive problems related to the reliability of complex systems or present techniques and/or theoretical results that have a discernable relationship to the solution of such problems. An important aim is to balance academic material and practical applications.