Assessment on resilience of urban agglomeration transportation system considering passenger choice and load-capacity factor

IF 9.4 1区 工程技术 Q1 ENGINEERING, INDUSTRIAL
{"title":"Assessment on resilience of urban agglomeration transportation system considering passenger choice and load-capacity factor","authors":"","doi":"10.1016/j.ress.2024.110527","DOIUrl":null,"url":null,"abstract":"<div><div>Intercity transportation system (ICTS), characterized by large-scale, high spatial-temporal concentration, and sparser departure frequencies, is more vulnerable in unexpected events. Understanding the resilience characteristics of ICTS is crucial for maintaining the network service capabilities. Aiming to conduct effective resilience assessment on ICTS, we develop the resilience simulation model by introduce dual-regulated parameters for network load and capacity into cascading propagation model under interruption events, and quantify the impact of travel distance, time costs, and route redundancy on travel choice of passengers. Meanwhile, propose service resilience indicators from both the passenger's and the system's perspectives. Finally, we conduct a case study on the resilience of ICTS in Beijing-Tianjin-Hebei Urban Agglomerations (BTH-UA). The results show that: 1) Multimodal transportation systems usually exhibit better resilience than unimodal systems. 2) For various resilience optimization metrics, it is essential to choose targeted recovery strategies to maximize network resilience. 3) Traveler sensitivity to travel time significantly influences the resilience of passenger-based network services. 4) Changes in transportation supply capacity and travel demand will impact the system's resilience. The research findings can provide valuable references for the resilience development and management of urban transportation systems.</div></div>","PeriodicalId":54500,"journal":{"name":"Reliability Engineering & System Safety","volume":null,"pages":null},"PeriodicalIF":9.4000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reliability Engineering & System Safety","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0951832024005994","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0

Abstract

Intercity transportation system (ICTS), characterized by large-scale, high spatial-temporal concentration, and sparser departure frequencies, is more vulnerable in unexpected events. Understanding the resilience characteristics of ICTS is crucial for maintaining the network service capabilities. Aiming to conduct effective resilience assessment on ICTS, we develop the resilience simulation model by introduce dual-regulated parameters for network load and capacity into cascading propagation model under interruption events, and quantify the impact of travel distance, time costs, and route redundancy on travel choice of passengers. Meanwhile, propose service resilience indicators from both the passenger's and the system's perspectives. Finally, we conduct a case study on the resilience of ICTS in Beijing-Tianjin-Hebei Urban Agglomerations (BTH-UA). The results show that: 1) Multimodal transportation systems usually exhibit better resilience than unimodal systems. 2) For various resilience optimization metrics, it is essential to choose targeted recovery strategies to maximize network resilience. 3) Traveler sensitivity to travel time significantly influences the resilience of passenger-based network services. 4) Changes in transportation supply capacity and travel demand will impact the system's resilience. The research findings can provide valuable references for the resilience development and management of urban transportation systems.
考虑乘客选择和运载能力因素的城市群交通系统复原力评估
城际交通系统(ICTS)具有规模大、时空集中度高、发车频率稀疏等特点,在突发事件中更加脆弱。了解城际交通系统的弹性特征对于保持网络服务能力至关重要。为了对 ICTS 进行有效的弹性评估,我们建立了弹性仿真模型,将网络负荷和容量的双规参数引入中断事件下的级联传播模型,量化了出行距离、时间成本和线路冗余度对乘客出行选择的影响。同时,从乘客和系统两个角度提出服务弹性指标。最后,我们对京津冀城市群(BTH-UA)ICTS 的弹性进行了案例研究。研究结果表明1) 多式联运系统通常比单式联运系统表现出更好的弹性。2) 对于各种弹性优化指标,必须选择有针对性的恢复策略,以最大限度地提高网络弹性。3) 旅客对旅行时间的敏感性极大地影响了客运网络服务的弹性。4) 运输供给能力和旅行需求的变化将影响系统的恢复能力。研究结果可为城市交通系统的弹性开发和管理提供有价值的参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Reliability Engineering & System Safety
Reliability Engineering & System Safety 管理科学-工程:工业
CiteScore
15.20
自引率
39.50%
发文量
621
审稿时长
67 days
期刊介绍: Elsevier publishes Reliability Engineering & System Safety in association with the European Safety and Reliability Association and the Safety Engineering and Risk Analysis Division. The international journal is devoted to developing and applying methods to enhance the safety and reliability of complex technological systems, like nuclear power plants, chemical plants, hazardous waste facilities, space systems, offshore and maritime systems, transportation systems, constructed infrastructure, and manufacturing plants. The journal normally publishes only articles that involve the analysis of substantive problems related to the reliability of complex systems or present techniques and/or theoretical results that have a discernable relationship to the solution of such problems. An important aim is to balance academic material and practical applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信