{"title":"Adaptive support vector machine for time-variant failure probability function estimation","authors":"Weiming Zheng, Xiukai Yuan, Xiya Bao, Yiwei Dong","doi":"10.1016/j.ress.2024.110510","DOIUrl":null,"url":null,"abstract":"<div><div>Time variant reliability analysis introduces additional complexity due to the inclusion of time. When the time-variant failure probability function (TFPF) of the structure is of interest, it inherently involves sequential evaluations of the failure probabilities of series systems varied with time in discretized space, posing a challenge to reliability analysis. An efficient approach for the evaluation of the TFPF, called ‘Time-dependent Adaptive Support Vector Machine combined with Monte Carlo Simulation’ (TASVM-MCS), is presented to reduce the corresponding computational cost. Based on the samples from Monte Carlo simulation (MCS), an iterative strategy is proposed to actively extract the most valuable sample points from the sample pool and iteratively update the support vector machine (SVM) model. In particular, an active learning function is proposed to take into account the diversity of samples and time simultaneously. In this way, the built SVM will be more suitable for the evaluation of TFPF other than a point-wise failure probability. The proposed TASVM-MCS method is relatively less sensitive to the dimensionality of the input variables, making it a powerful and promising approach for time-variant reliability computations. Four representative examples are given to demonstrate the significant effectiveness and efficiency of the proposed method.</div></div>","PeriodicalId":54500,"journal":{"name":"Reliability Engineering & System Safety","volume":null,"pages":null},"PeriodicalIF":9.4000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reliability Engineering & System Safety","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0951832024005829","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0
Abstract
Time variant reliability analysis introduces additional complexity due to the inclusion of time. When the time-variant failure probability function (TFPF) of the structure is of interest, it inherently involves sequential evaluations of the failure probabilities of series systems varied with time in discretized space, posing a challenge to reliability analysis. An efficient approach for the evaluation of the TFPF, called ‘Time-dependent Adaptive Support Vector Machine combined with Monte Carlo Simulation’ (TASVM-MCS), is presented to reduce the corresponding computational cost. Based on the samples from Monte Carlo simulation (MCS), an iterative strategy is proposed to actively extract the most valuable sample points from the sample pool and iteratively update the support vector machine (SVM) model. In particular, an active learning function is proposed to take into account the diversity of samples and time simultaneously. In this way, the built SVM will be more suitable for the evaluation of TFPF other than a point-wise failure probability. The proposed TASVM-MCS method is relatively less sensitive to the dimensionality of the input variables, making it a powerful and promising approach for time-variant reliability computations. Four representative examples are given to demonstrate the significant effectiveness and efficiency of the proposed method.
期刊介绍:
Elsevier publishes Reliability Engineering & System Safety in association with the European Safety and Reliability Association and the Safety Engineering and Risk Analysis Division. The international journal is devoted to developing and applying methods to enhance the safety and reliability of complex technological systems, like nuclear power plants, chemical plants, hazardous waste facilities, space systems, offshore and maritime systems, transportation systems, constructed infrastructure, and manufacturing plants. The journal normally publishes only articles that involve the analysis of substantive problems related to the reliability of complex systems or present techniques and/or theoretical results that have a discernable relationship to the solution of such problems. An important aim is to balance academic material and practical applications.