Jie Liu , Fei Cai , Wanqing Wang , Haoyuan Zhu , Liangyun Teng , Xuehua Luo , Yi Chen , Chenwei Hao
{"title":"Research on Scenario Extrapolation and Emergency Decision-Making for Fire and Explosion Accidents at University Laboratories Based on BN-CBR","authors":"Jie Liu , Fei Cai , Wanqing Wang , Haoyuan Zhu , Liangyun Teng , Xuehua Luo , Yi Chen , Chenwei Hao","doi":"10.1016/j.ress.2024.110579","DOIUrl":null,"url":null,"abstract":"<div><div>To solve the problems of suddenness, uncertainty and untimely emergency decision-making related to fire and explosion accidents in university laboratories, a combined method of BN and CBR is introduced to analyze laboratory accidents. By summarizing the characteristics of 72 accident cases worldwide, four scenario elements with key roles are extracted by combining the public safety triangle theoretical model; a BN is established from the macro perspective, which is based on the construction of dynamic scenarios; the evolution path is analyzed via BN theory; and the probability of occurrence of accidents is quantified from the microscopic perspective, with a focus on the analysis of the accidental evolution process. A case similarity calculation is carried out via CBR, and the construction of a BN-CBR-assisted decision-making model is completed, verified and corrected in an case study. The results show that the BN-CBR model can quickly determine the accident evolution path and the most similar historical cases, and its quantitative probability calculation enables one to comprehensively grasp the real-time state of the whole accident and the emergency response in a timely manner, which provides a new way to approach emergency decision-making of accidents.</div></div>","PeriodicalId":54500,"journal":{"name":"Reliability Engineering & System Safety","volume":"253 ","pages":"Article 110579"},"PeriodicalIF":9.4000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reliability Engineering & System Safety","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0951832024006501","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0
Abstract
To solve the problems of suddenness, uncertainty and untimely emergency decision-making related to fire and explosion accidents in university laboratories, a combined method of BN and CBR is introduced to analyze laboratory accidents. By summarizing the characteristics of 72 accident cases worldwide, four scenario elements with key roles are extracted by combining the public safety triangle theoretical model; a BN is established from the macro perspective, which is based on the construction of dynamic scenarios; the evolution path is analyzed via BN theory; and the probability of occurrence of accidents is quantified from the microscopic perspective, with a focus on the analysis of the accidental evolution process. A case similarity calculation is carried out via CBR, and the construction of a BN-CBR-assisted decision-making model is completed, verified and corrected in an case study. The results show that the BN-CBR model can quickly determine the accident evolution path and the most similar historical cases, and its quantitative probability calculation enables one to comprehensively grasp the real-time state of the whole accident and the emergency response in a timely manner, which provides a new way to approach emergency decision-making of accidents.
期刊介绍:
Elsevier publishes Reliability Engineering & System Safety in association with the European Safety and Reliability Association and the Safety Engineering and Risk Analysis Division. The international journal is devoted to developing and applying methods to enhance the safety and reliability of complex technological systems, like nuclear power plants, chemical plants, hazardous waste facilities, space systems, offshore and maritime systems, transportation systems, constructed infrastructure, and manufacturing plants. The journal normally publishes only articles that involve the analysis of substantive problems related to the reliability of complex systems or present techniques and/or theoretical results that have a discernable relationship to the solution of such problems. An important aim is to balance academic material and practical applications.