Digital-Twin Predictive Control of Nonlinear Systems With Time Delays, Unknown Dynamics, and Communication Delays.

IF 9.4 1区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS
Guo-Ping Liu
{"title":"Digital-Twin Predictive Control of Nonlinear Systems With Time Delays, Unknown Dynamics, and Communication Delays.","authors":"Guo-Ping Liu","doi":"10.1109/TCYB.2024.3471608","DOIUrl":null,"url":null,"abstract":"<p><p>With the advancement of computing technology and big data technology, digital twins have gradually been applied in various fields, such as manufacturing, energy, and healthcare. This article studies the predictive control of nonlinear dynamic systems using digital twins. Based on a digital-twin control system framework, predictive control is discussed for three different nonlinear systems with time delays: 1) known nonlinear systems; 2) unknown nonlinear systems; and 3) unknown nonlinear cyber-physical systems. Both a digital-twin predictive control strategy and a digital-twin control predictor are proposed to compensate for time delays and communication delays actively. With the strategy and predictor, the digital-twin controller of a time-delay nonlinear system can be designed to achieve the desired performance based on the nonlinear system without time delays, which vastly simplifies the controller design procedure. A digital model is constructed using data to deal with unknown nonlinear dynamics. The three different closed-loop digital-twin predictive control systems are analyzed to derive a unified stability criterion. The simulation results show how the proposed digital-twin predictive control method performs well for nonlinear systems with time delays, unknown dynamics, and/or communication delays.</p>","PeriodicalId":13112,"journal":{"name":"IEEE Transactions on Cybernetics","volume":"PP ","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Cybernetics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/TCYB.2024.3471608","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

With the advancement of computing technology and big data technology, digital twins have gradually been applied in various fields, such as manufacturing, energy, and healthcare. This article studies the predictive control of nonlinear dynamic systems using digital twins. Based on a digital-twin control system framework, predictive control is discussed for three different nonlinear systems with time delays: 1) known nonlinear systems; 2) unknown nonlinear systems; and 3) unknown nonlinear cyber-physical systems. Both a digital-twin predictive control strategy and a digital-twin control predictor are proposed to compensate for time delays and communication delays actively. With the strategy and predictor, the digital-twin controller of a time-delay nonlinear system can be designed to achieve the desired performance based on the nonlinear system without time delays, which vastly simplifies the controller design procedure. A digital model is constructed using data to deal with unknown nonlinear dynamics. The three different closed-loop digital-twin predictive control systems are analyzed to derive a unified stability criterion. The simulation results show how the proposed digital-twin predictive control method performs well for nonlinear systems with time delays, unknown dynamics, and/or communication delays.

具有时间延迟、未知动态和通信延迟的非线性系统的数字双预测控制。
随着计算技术和大数据技术的发展,数字孪生已逐渐应用于制造、能源和医疗等各个领域。本文研究了利用数字孪生对非线性动态系统进行预测控制的问题。基于数字孪生控制系统框架,讨论了三种不同的带时间延迟的非线性系统的预测控制:1) 已知非线性系统;2) 未知非线性系统;3) 未知非线性网络物理系统。我们提出了数字双预测控制策略和数字双控制预测器,以积极补偿时间延迟和通信延迟。利用该策略和预测器,可以根据无时间延迟的非线性系统设计出时间延迟非线性系统的数字孪生控制器,以实现所需的性能,从而大大简化了控制器的设计程序。利用数据构建的数字模型可处理未知的非线性动态。通过分析三种不同的闭环数字孪生预测控制系统,得出统一的稳定性准则。仿真结果表明,对于具有时间延迟、未知动态和/或通信延迟的非线性系统,所提出的数字孪生预测控制方法表现良好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Cybernetics
IEEE Transactions on Cybernetics COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-COMPUTER SCIENCE, CYBERNETICS
CiteScore
25.40
自引率
11.00%
发文量
1869
期刊介绍: The scope of the IEEE Transactions on Cybernetics includes computational approaches to the field of cybernetics. Specifically, the transactions welcomes papers on communication and control across machines or machine, human, and organizations. The scope includes such areas as computational intelligence, computer vision, neural networks, genetic algorithms, machine learning, fuzzy systems, cognitive systems, decision making, and robotics, to the extent that they contribute to the theme of cybernetics or demonstrate an application of cybernetics principles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信