Wrinkled layers lead to high in-plane zT values in hexagonal CaAgSb

IF 10 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Juan Cui , Chengliang Xia , Huan Zheng , Miao Zheng , Dafang Li , Yue Chen , Yu Yang
{"title":"Wrinkled layers lead to high in-plane zT values in hexagonal CaAgSb","authors":"Juan Cui ,&nbsp;Chengliang Xia ,&nbsp;Huan Zheng ,&nbsp;Miao Zheng ,&nbsp;Dafang Li ,&nbsp;Yue Chen ,&nbsp;Yu Yang","doi":"10.1016/j.mtphys.2024.101566","DOIUrl":null,"url":null,"abstract":"<div><div>Layered thermoelectric materials (LTMs) have attracted great attention due to their anisotropic transport behaviors that provide an opportunity to disentangle the interrelated electrical and thermal conductivities. In this study, we found that hexagonal CaAgSb (h-CaAgSb) possesses a lower lattice thermal conductivity and a higher electrical conductivity simultaneously along the in-plane direction when compared with the out-of-plane direction. The low in-plane lattice thermal conductivity mainly originates from the low group velocity of longitudinal acoustic phonon modes. Meanwhile, strong anharmonicity is discovered for the low-lying optical phonon modes. On the other hand, the high in-plane electrical conductivity relies on the small effective mass. Thus, both p-type and n-type h-CaAgSb exhibit a high <em>zT</em> over 2.0 along the in-plane direction at the optimal carrier concentrations. The anisotropic transport properties of h-CaAgSb reported in this work may provide guidance to the experiments. More importantly, the physical insights revealed for the disentangled electrical and thermal transport properties may pave the way for finding other excellent LTMs and optimizing the thermoelectric performance through structure engineering.</div></div>","PeriodicalId":18253,"journal":{"name":"Materials Today Physics","volume":"48 ","pages":"Article 101566"},"PeriodicalIF":10.0000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Physics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542529324002426","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Layered thermoelectric materials (LTMs) have attracted great attention due to their anisotropic transport behaviors that provide an opportunity to disentangle the interrelated electrical and thermal conductivities. In this study, we found that hexagonal CaAgSb (h-CaAgSb) possesses a lower lattice thermal conductivity and a higher electrical conductivity simultaneously along the in-plane direction when compared with the out-of-plane direction. The low in-plane lattice thermal conductivity mainly originates from the low group velocity of longitudinal acoustic phonon modes. Meanwhile, strong anharmonicity is discovered for the low-lying optical phonon modes. On the other hand, the high in-plane electrical conductivity relies on the small effective mass. Thus, both p-type and n-type h-CaAgSb exhibit a high zT over 2.0 along the in-plane direction at the optimal carrier concentrations. The anisotropic transport properties of h-CaAgSb reported in this work may provide guidance to the experiments. More importantly, the physical insights revealed for the disentangled electrical and thermal transport properties may pave the way for finding other excellent LTMs and optimizing the thermoelectric performance through structure engineering.

Abstract Image

Abstract Image

皱褶层导致六方 CaAgSb 具有较高的面内 zT 值
层状热电材料(LTMs)因其各向异性的输运行为而备受关注,这为我们解开相互关联的电导率和热导率提供了机会。在这项研究中,我们发现六方 CaAgSb(h-CaAgSb)与面外方向相比,在面内方向同时具有较低的晶格热导率和较高的电导率。面内晶格热导率低的主要原因是纵向声子模式的群速度较低。同时,还发现低洼光学声子模式具有很强的非谐波性。另一方面,高面内电导率依赖于较小的有效质量。因此,在最佳载流子浓度下,p 型和 n 型 h-CaAgSb 沿面内方向都表现出超过 2.0 的高 zT。这项工作中报告的 h-CaAgSb 各向异性输运特性可为实验提供指导。更重要的是,本文所揭示的电学和热学输运特性相分离的物理原理,可为寻找其他优异的低温金属和通过结构工程优化热电性能铺平道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Today Physics
Materials Today Physics Materials Science-General Materials Science
CiteScore
14.00
自引率
7.80%
发文量
284
审稿时长
15 days
期刊介绍: Materials Today Physics is a multi-disciplinary journal focused on the physics of materials, encompassing both the physical properties and materials synthesis. Operating at the interface of physics and materials science, this journal covers one of the largest and most dynamic fields within physical science. The forefront research in materials physics is driving advancements in new materials, uncovering new physics, and fostering novel applications at an unprecedented pace.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信