Leanne M Holt, Trevonn M Gyles, Eric M Parise, Angelica M Minier-Toribio, Matthew Rivera, Tamara Markovic, Szu-Ying Yeh, Eric J Nestler
{"title":"Astrocytic CREB in Nucleus Accumbens Promotes Susceptibility to Chronic Stress.","authors":"Leanne M Holt, Trevonn M Gyles, Eric M Parise, Angelica M Minier-Toribio, Matthew Rivera, Tamara Markovic, Szu-Ying Yeh, Eric J Nestler","doi":"10.1016/j.biopsych.2024.09.021","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Increasing evidence implicates astrocytes in stress and depression in both rodent models and human major depressive disorder. Despite this, little is known about the transcriptional responses to stress of astrocytes within the nucleus accumbens (NAc), a key brain reward region, and their influence on behavioral outcomes.</p><p><strong>Methods: </strong>We used whole-cell sorting, RNA sequencing, and bioinformatic analyses to investigate the NAc astrocyte transcriptome in male mice in response to chronic social defeat stress (CSDS). Immunohistochemistry was used to determine stress-induced changes in astrocytic CREB (cAMP response element binding protein) within the NAc. Finally, astrocytic regulation of depression-like behavior was investigated using viral-mediated manipulation of CREB in combination with CSDS.</p><p><strong>Results: </strong>We found a robust transcriptional response in NAc astrocytes to CSDS in stressed mice, with changes seen in both stress-susceptible and stress-resilient animals. Bioinformatic analysis revealed CREB, a transcription factor widely studied in neurons, as one of the top-predicted upstream regulators of the NAc astrocyte transcriptome, with opposite activation states implicated in resilient versus susceptible mice. This bioinformatic deduction was confirmed at the protein level with immunohistochemistry. Moreover, NAc astrocyte morphological complexity correlated with CREB activation and was reduced selectively in astrocytes of resilient mice. Viral overexpression of CREB selectively in NAc astrocytes promoted susceptibility to chronic stress.</p><p><strong>Conclusions: </strong>Together, our data demonstrate that the astrocyte transcriptome responds robustly to CSDS and that transcriptional regulation in astrocytes contributes to depressive-like behaviors. A better understanding of transcriptional regulation in astrocytes may reveal unknown molecular mechanisms underlying neuropsychiatric disorders.</p>","PeriodicalId":8918,"journal":{"name":"Biological Psychiatry","volume":" ","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Psychiatry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.biopsych.2024.09.021","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Increasing evidence implicates astrocytes in stress and depression in both rodent models and human major depressive disorder. Despite this, little is known about the transcriptional responses to stress of astrocytes within the nucleus accumbens (NAc), a key brain reward region, and their influence on behavioral outcomes.
Methods: We used whole-cell sorting, RNA sequencing, and bioinformatic analyses to investigate the NAc astrocyte transcriptome in male mice in response to chronic social defeat stress (CSDS). Immunohistochemistry was used to determine stress-induced changes in astrocytic CREB (cAMP response element binding protein) within the NAc. Finally, astrocytic regulation of depression-like behavior was investigated using viral-mediated manipulation of CREB in combination with CSDS.
Results: We found a robust transcriptional response in NAc astrocytes to CSDS in stressed mice, with changes seen in both stress-susceptible and stress-resilient animals. Bioinformatic analysis revealed CREB, a transcription factor widely studied in neurons, as one of the top-predicted upstream regulators of the NAc astrocyte transcriptome, with opposite activation states implicated in resilient versus susceptible mice. This bioinformatic deduction was confirmed at the protein level with immunohistochemistry. Moreover, NAc astrocyte morphological complexity correlated with CREB activation and was reduced selectively in astrocytes of resilient mice. Viral overexpression of CREB selectively in NAc astrocytes promoted susceptibility to chronic stress.
Conclusions: Together, our data demonstrate that the astrocyte transcriptome responds robustly to CSDS and that transcriptional regulation in astrocytes contributes to depressive-like behaviors. A better understanding of transcriptional regulation in astrocytes may reveal unknown molecular mechanisms underlying neuropsychiatric disorders.
期刊介绍:
Biological Psychiatry is an official journal of the Society of Biological Psychiatry and was established in 1969. It is the first journal in the Biological Psychiatry family, which also includes Biological Psychiatry: Cognitive Neuroscience and Neuroimaging and Biological Psychiatry: Global Open Science. The Society's main goal is to promote excellence in scientific research and education in the fields related to the nature, causes, mechanisms, and treatments of disorders pertaining to thought, emotion, and behavior. To fulfill this mission, Biological Psychiatry publishes peer-reviewed, rapid-publication articles that present new findings from original basic, translational, and clinical mechanistic research, ultimately advancing our understanding of psychiatric disorders and their treatment. The journal also encourages the submission of reviews and commentaries on current research and topics of interest.