Jorge Enrique Vazquez Bucheli, Yuri Lee, Bobae Kim, Nuno F Azevedo, Andreia S Azevedo, Svetoslav Dimitrov Todorov, Yosep Ji, Hyeji Kang, Wilhelm H Holzapfel
{"title":"Use of FISH-FLOW as a Method for the Identification and Quantification of Bacterial Populations.","authors":"Jorge Enrique Vazquez Bucheli, Yuri Lee, Bobae Kim, Nuno F Azevedo, Andreia S Azevedo, Svetoslav Dimitrov Todorov, Yosep Ji, Hyeji Kang, Wilhelm H Holzapfel","doi":"10.1002/mnfr.202400494","DOIUrl":null,"url":null,"abstract":"<p><p>The gastrointestinal tract (GIT) harbors the largest group of microbiotas among the microbial communities of the human host. The resident organisms typical of a healthy gut are well adapted to the gastrointestinal environment while alteration of these populations can trigger disorders that may affect the health and well-being of the host. Various investigations have applied different tools to study bacterial communities in the gut and their correlation with gastrointestinal disorders such as inflammatory bowel disease (IBD), obesity, and diabetes. This study proposes fluorescent in situ hybridization, combined with flow cytometry (FISH-FLOW), as an alternative approach for phylum level identification of Firmicutes, Bacteroidetes, Actinobacteria, and Proteobacteria and quantification of target bacteria from the GIT based on analysis of fecal samples, where results are validated by quantitative polymerase chain reaction (qPCR) and 16S ribosomal ribonucleic acid (16s rRNA) sequencing. The results obtained via FISH-FLOW experimental approach show high specificity for the developed probes for hybridization with the target bacteria. The study, therefore, suggests the FISH-FLOW as a reliable method for studying bacterial communities in the gut with results correlating well with those of metagenomic investigations of the same fecal samples.</p>","PeriodicalId":212,"journal":{"name":"Molecular Nutrition & Food Research","volume":" ","pages":"e2400494"},"PeriodicalIF":4.5000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Nutrition & Food Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1002/mnfr.202400494","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The gastrointestinal tract (GIT) harbors the largest group of microbiotas among the microbial communities of the human host. The resident organisms typical of a healthy gut are well adapted to the gastrointestinal environment while alteration of these populations can trigger disorders that may affect the health and well-being of the host. Various investigations have applied different tools to study bacterial communities in the gut and their correlation with gastrointestinal disorders such as inflammatory bowel disease (IBD), obesity, and diabetes. This study proposes fluorescent in situ hybridization, combined with flow cytometry (FISH-FLOW), as an alternative approach for phylum level identification of Firmicutes, Bacteroidetes, Actinobacteria, and Proteobacteria and quantification of target bacteria from the GIT based on analysis of fecal samples, where results are validated by quantitative polymerase chain reaction (qPCR) and 16S ribosomal ribonucleic acid (16s rRNA) sequencing. The results obtained via FISH-FLOW experimental approach show high specificity for the developed probes for hybridization with the target bacteria. The study, therefore, suggests the FISH-FLOW as a reliable method for studying bacterial communities in the gut with results correlating well with those of metagenomic investigations of the same fecal samples.
期刊介绍:
Molecular Nutrition & Food Research is a primary research journal devoted to health, safety and all aspects of molecular nutrition such as nutritional biochemistry, nutrigenomics and metabolomics aiming to link the information arising from related disciplines:
Bioactivity: Nutritional and medical effects of food constituents including bioavailability and kinetics.
Immunology: Understanding the interactions of food and the immune system.
Microbiology: Food spoilage, food pathogens, chemical and physical approaches of fermented foods and novel microbial processes.
Chemistry: Isolation and analysis of bioactive food ingredients while considering environmental aspects.