Efficient and stable perovskite solar cells based on multi-active sites 5-amino-1,3,4-thiadiazole-2-thiol modified interface

IF 10 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Jing Xu, Jihuai Wu, Qingshui Zheng, Lin Gao, Sheng Tang, Fuda Yu, Weihai Sun, Zhang Lan
{"title":"Efficient and stable perovskite solar cells based on multi-active sites 5-amino-1,3,4-thiadiazole-2-thiol modified interface","authors":"Jing Xu,&nbsp;Jihuai Wu,&nbsp;Qingshui Zheng,&nbsp;Lin Gao,&nbsp;Sheng Tang,&nbsp;Fuda Yu,&nbsp;Weihai Sun,&nbsp;Zhang Lan","doi":"10.1016/j.mtphys.2024.101564","DOIUrl":null,"url":null,"abstract":"<div><div>The highest certification efficiency of perovskite solar cells (PSCs) has reached 26.7 %. However, the high defect density on the surface of perovskite films prepared by low temperature solution method and the energy mismatch between the carrier transport layers and perovskite layer (PVK) greatly limit the performance improvement of PSCs. The introduction of passivating agent to modify the perovskite interface and grain boundary can reduce the defect density, coordinate the energy level effectively, and improve the efficiency and stability of devices. A Lewis base molecule 5-amino-1,3,4-thiadiazole-2-thiol (AMTD) with multiple active sites is introduced at the interface between PVK and hole transport layer (HTL). The electron-rich groups, such as = S, –S–, –NH<sub>2</sub>, –N on AMTD, passivate the positive electrical defects on the interface and grain boundary, and increase carrier transport efficiency. The interfacial energy level array is optimized to achieve more efficient charge transportation. In addition, the modified of AMTD has a significant protective effect on the perovskite, which inhibit the moisture erosion of in environment. Consequently, the AMTD-optimized device achieves a power conversion efficiency (PCE) of 24.13 %, compared to the efficiency of 21.62 % for pristine device. The stability of the devices is improved greatly.</div></div>","PeriodicalId":18253,"journal":{"name":"Materials Today Physics","volume":"48 ","pages":"Article 101564"},"PeriodicalIF":10.0000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Physics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542529324002402","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The highest certification efficiency of perovskite solar cells (PSCs) has reached 26.7 %. However, the high defect density on the surface of perovskite films prepared by low temperature solution method and the energy mismatch between the carrier transport layers and perovskite layer (PVK) greatly limit the performance improvement of PSCs. The introduction of passivating agent to modify the perovskite interface and grain boundary can reduce the defect density, coordinate the energy level effectively, and improve the efficiency and stability of devices. A Lewis base molecule 5-amino-1,3,4-thiadiazole-2-thiol (AMTD) with multiple active sites is introduced at the interface between PVK and hole transport layer (HTL). The electron-rich groups, such as = S, –S–, –NH2, –N on AMTD, passivate the positive electrical defects on the interface and grain boundary, and increase carrier transport efficiency. The interfacial energy level array is optimized to achieve more efficient charge transportation. In addition, the modified of AMTD has a significant protective effect on the perovskite, which inhibit the moisture erosion of in environment. Consequently, the AMTD-optimized device achieves a power conversion efficiency (PCE) of 24.13 %, compared to the efficiency of 21.62 % for pristine device. The stability of the devices is improved greatly.
基于多活性位点 5-氨基-1,3,4-噻二唑-2-硫醇修饰界面的高效稳定的过氧化物太阳能电池
过氧化物太阳能电池(PSC)的最高认证效率已达到 26.7%。然而,低温溶液法制备的过氧化物薄膜表面缺陷密度高,载流子传输层与过氧化物层(PVK)之间能量不匹配,极大地限制了过氧化物太阳能电池性能的提高。引入钝化剂对包晶石界面和晶界进行改性,可以降低缺陷密度,有效协调能级,提高器件的效率和稳定性。在 PVK 和空穴传输层(HTL)的界面上引入了具有多个活性位点的路易斯碱分子 5-氨基-1,3,4-噻二唑-2-硫醇(AMTD)。AMTD 上的富电子基团(如 = S、-S-、-NH2、-N)可钝化界面和晶界上的正电缺陷,提高载流子传输效率。通过优化界面能级阵列,可实现更高效的电荷传输。此外,AMTD 的改性对包晶石具有显著的保护作用,可抑制环境中的湿气侵蚀。因此,经过 AMTD 优化的器件实现了 24.13% 的功率转换效率 (PCE),而原始器件的效率仅为 21.62%。器件的稳定性也大大提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Today Physics
Materials Today Physics Materials Science-General Materials Science
CiteScore
14.00
自引率
7.80%
发文量
284
审稿时长
15 days
期刊介绍: Materials Today Physics is a multi-disciplinary journal focused on the physics of materials, encompassing both the physical properties and materials synthesis. Operating at the interface of physics and materials science, this journal covers one of the largest and most dynamic fields within physical science. The forefront research in materials physics is driving advancements in new materials, uncovering new physics, and fostering novel applications at an unprecedented pace.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信