Peng Han, Jingtong Zhang, Shengbin Shi, Yunhong Zhao, Yajun Zhang, Jie Wang
{"title":"Machine learning assisted screening of two dimensional chalcogenide ferromagnetic materials with Dzyaloshinskii Moriya interaction","authors":"Peng Han, Jingtong Zhang, Shengbin Shi, Yunhong Zhao, Yajun Zhang, Jie Wang","doi":"10.1038/s41524-024-01419-y","DOIUrl":null,"url":null,"abstract":"<p>Magnetic skyrmions are potential candidates for high-density storage and logic devices because of their inherent topological stability and nanoscale size. Two-dimensional (2D) Janus transition metal chalcogenides (TMDs) are widely used to induce skyrmions due to the breaking of inversion symmetry. However, the experimental synthesis of Janus TMDs is rare, which indicates that the Janus configuration might not be the most stable MXY structure. Here, through machine-learning-assisted high-throughput first-principles calculations, we demonstrate that not all MXY compounds can be stabilized in Janus layered structure and a large proportion prefer to form other configurations with lower energy than the Janus configuration. Interestingly, these new configurations exhibit a strong Dzyaloshinskii–Moriya interaction (DMI), which can generate and stabilize skyrmions even under a strong magnetic field. This work provides not only an efficient method for obtaining ferromagnetic materials with strong DMI but also a theoretical guidance for the synthesis of TMDs via experiments.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"32 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-024-01419-y","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Magnetic skyrmions are potential candidates for high-density storage and logic devices because of their inherent topological stability and nanoscale size. Two-dimensional (2D) Janus transition metal chalcogenides (TMDs) are widely used to induce skyrmions due to the breaking of inversion symmetry. However, the experimental synthesis of Janus TMDs is rare, which indicates that the Janus configuration might not be the most stable MXY structure. Here, through machine-learning-assisted high-throughput first-principles calculations, we demonstrate that not all MXY compounds can be stabilized in Janus layered structure and a large proportion prefer to form other configurations with lower energy than the Janus configuration. Interestingly, these new configurations exhibit a strong Dzyaloshinskii–Moriya interaction (DMI), which can generate and stabilize skyrmions even under a strong magnetic field. This work provides not only an efficient method for obtaining ferromagnetic materials with strong DMI but also a theoretical guidance for the synthesis of TMDs via experiments.
期刊介绍:
npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings.
Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.