High Affinity Inhibitors of the Macrophage Infectivity Potentiator Protein from Trypanosoma cruzi, Burkholderia pseudomallei, and Legionella pneumophila─A Comparison.

IF 4 2区 医学 Q2 CHEMISTRY, MEDICINAL
ACS Infectious Diseases Pub Date : 2024-10-11 Epub Date: 2024-10-02 DOI:10.1021/acsinfecdis.4c00553
Theresa Lohr, Carina Herbst, Nicole M Bzdyl, Christopher Jenkins, Nicolas J Scheuplein, Wisely Oki Sugiarto, Jacob J Whittaker, Albert Guskov, Isobel Norville, Ute A Hellmich, Felix Hausch, Mitali Sarkar-Tyson, Christoph Sotriffer, Ulrike Holzgrabe
{"title":"High Affinity Inhibitors of the Macrophage Infectivity Potentiator Protein from <i>Trypanosoma cruzi</i>, <i>Burkholderia pseudomallei</i>, and <i>Legionella pneumophila</i>─A Comparison.","authors":"Theresa Lohr, Carina Herbst, Nicole M Bzdyl, Christopher Jenkins, Nicolas J Scheuplein, Wisely Oki Sugiarto, Jacob J Whittaker, Albert Guskov, Isobel Norville, Ute A Hellmich, Felix Hausch, Mitali Sarkar-Tyson, Christoph Sotriffer, Ulrike Holzgrabe","doi":"10.1021/acsinfecdis.4c00553","DOIUrl":null,"url":null,"abstract":"<p><p>Since Chagas disease, melioidosis, and Legionnaires' disease are all potentially life-threatening infections, there is an urgent need for new treatment strategies. All causative agents, <i>Trypanosoma cruzi</i>, <i>Burkholderia pseudomallei</i>, and <i>Legionella pneumophila</i>, express a virulence factor, the macrophage infectivity potentiator (MIP) protein, emerging as a promising new therapeutic target. Inhibition of MIP proteins having a peptidyl-prolyl isomerase activity leads to reduced viability, proliferation, and cell invasion. The affinity of a series of pipecolic acid-type MIP inhibitors was evaluated against all MIPs using a fluorescence polarization assay. The analysis of structure-activity relationships led to highly active inhibitors of MIPs of all pathogens, characterized by a one-digit nanomolar affinity for the MIPs and a very effective inhibition of their peptidyl-prolyl isomerase activity. Docking studies, molecular dynamics simulations, and quantum mechanical calculations suggest an extended σ-hole of the <i>meta</i>-halogenated phenyl sulfonamide to be responsible for the high affinity.</p>","PeriodicalId":17,"journal":{"name":"ACS Infectious Diseases","volume":" ","pages":"3681-3691"},"PeriodicalIF":4.0000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11476723/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Infectious Diseases","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acsinfecdis.4c00553","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/2 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Since Chagas disease, melioidosis, and Legionnaires' disease are all potentially life-threatening infections, there is an urgent need for new treatment strategies. All causative agents, Trypanosoma cruzi, Burkholderia pseudomallei, and Legionella pneumophila, express a virulence factor, the macrophage infectivity potentiator (MIP) protein, emerging as a promising new therapeutic target. Inhibition of MIP proteins having a peptidyl-prolyl isomerase activity leads to reduced viability, proliferation, and cell invasion. The affinity of a series of pipecolic acid-type MIP inhibitors was evaluated against all MIPs using a fluorescence polarization assay. The analysis of structure-activity relationships led to highly active inhibitors of MIPs of all pathogens, characterized by a one-digit nanomolar affinity for the MIPs and a very effective inhibition of their peptidyl-prolyl isomerase activity. Docking studies, molecular dynamics simulations, and quantum mechanical calculations suggest an extended σ-hole of the meta-halogenated phenyl sulfonamide to be responsible for the high affinity.

克鲁斯锥虫、假马勒伯克霍尔德氏菌和嗜肺军团菌巨噬细胞感染潜能蛋白的高亲和力抑制剂──比较。
由于恰加斯病、美拉菌病和军团病都是可能危及生命的感染,因此迫切需要新的治疗策略。所有致病菌--克鲁斯锥虫、假马来伯克霍尔德氏菌和嗜肺军团菌--都表达一种毒力因子,即巨噬细胞感染性增效因子(MIP)蛋白。抑制具有肽基-脯氨酰异构酶活性的 MIP 蛋白会降低其活力、增殖和细胞侵袭能力。利用荧光偏振测定法评估了一系列哌啶醇酸型 MIP 抑制剂对所有 MIP 的亲和力。通过对结构-活性关系的分析,发现了对所有病原体的 MIPs 都具有高活性的抑制剂,其特点是对 MIPs 具有一位数纳摩尔的亲和力,并能非常有效地抑制它们的肽基脯氨酰异构酶活性。对接研究、分子动力学模拟和量子力学计算表明,偏卤代苯磺酰胺的扩展σ孔是产生高亲和力的原因。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Infectious Diseases
ACS Infectious Diseases CHEMISTRY, MEDICINALINFECTIOUS DISEASES&nb-INFECTIOUS DISEASES
CiteScore
9.70
自引率
3.80%
发文量
213
期刊介绍: ACS Infectious Diseases will be the first journal to highlight chemistry and its role in this multidisciplinary and collaborative research area. The journal will cover a diverse array of topics including, but not limited to: * Discovery and development of new antimicrobial agents — identified through target- or phenotypic-based approaches as well as compounds that induce synergy with antimicrobials. * Characterization and validation of drug target or pathways — use of single target and genome-wide knockdown and knockouts, biochemical studies, structural biology, new technologies to facilitate characterization and prioritization of potential drug targets. * Mechanism of drug resistance — fundamental research that advances our understanding of resistance; strategies to prevent resistance. * Mechanisms of action — use of genetic, metabolomic, and activity- and affinity-based protein profiling to elucidate the mechanism of action of clinical and experimental antimicrobial agents. * Host-pathogen interactions — tools for studying host-pathogen interactions, cellular biochemistry of hosts and pathogens, and molecular interactions of pathogens with host microbiota. * Small molecule vaccine adjuvants for infectious disease. * Viral and bacterial biochemistry and molecular biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信