Su Yeon Jung;Hyunwoo Kim;Jongmin Lee;Jang Hyun Kim
{"title":"Impact of Work-Function Variation in Ferroelectric Field-Effect Transistor","authors":"Su Yeon Jung;Hyunwoo Kim;Jongmin Lee;Jang Hyun Kim","doi":"10.1109/JEDS.2024.3465594","DOIUrl":null,"url":null,"abstract":"We analyzed the impact of work-function variation (WFV) in ferroelectric field-effect transistor (FeFET). To analyze the operation characteristics, we employed the technology computer-aided design (TCAD) simulations. After evaluating ferroelectricity (FE) characteristics and optimizing device model parameters through calibration, we extracted five key parameters from the hysteretic transfer curves of the FeFET: threshold voltage (Vth), on current (Iin), subthreshold swing (SS), off current (Ioff), and gate-induced drain leakage (GIDL). The extracted parameters were compared based on the presence or absence of FE and the ferroelectric thickness. It was confirmed that the presence of FE leads to increased variation due to dipole alignment with WFV, and that the electric field is maintained even with an increase in ferroelectric thickness","PeriodicalId":13210,"journal":{"name":"IEEE Journal of the Electron Devices Society","volume":"12 ","pages":"779-784"},"PeriodicalIF":2.0000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10685408","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of the Electron Devices Society","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10685408/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
We analyzed the impact of work-function variation (WFV) in ferroelectric field-effect transistor (FeFET). To analyze the operation characteristics, we employed the technology computer-aided design (TCAD) simulations. After evaluating ferroelectricity (FE) characteristics and optimizing device model parameters through calibration, we extracted five key parameters from the hysteretic transfer curves of the FeFET: threshold voltage (Vth), on current (Iin), subthreshold swing (SS), off current (Ioff), and gate-induced drain leakage (GIDL). The extracted parameters were compared based on the presence or absence of FE and the ferroelectric thickness. It was confirmed that the presence of FE leads to increased variation due to dipole alignment with WFV, and that the electric field is maintained even with an increase in ferroelectric thickness
期刊介绍:
The IEEE Journal of the Electron Devices Society (J-EDS) is an open-access, fully electronic scientific journal publishing papers ranging from fundamental to applied research that are scientifically rigorous and relevant to electron devices. The J-EDS publishes original and significant contributions relating to the theory, modelling, design, performance, and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanodevices, optoelectronics, photovoltaics, power IC''s, and micro-sensors. Tutorial and review papers on these subjects are, also, published. And, occasionally special issues with a collection of papers on particular areas in more depth and breadth are, also, published. J-EDS publishes all papers that are judged to be technically valid and original.