Impact of Work-Function Variation in Ferroelectric Field-Effect Transistor

IF 2 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Su Yeon Jung;Hyunwoo Kim;Jongmin Lee;Jang Hyun Kim
{"title":"Impact of Work-Function Variation in Ferroelectric Field-Effect Transistor","authors":"Su Yeon Jung;Hyunwoo Kim;Jongmin Lee;Jang Hyun Kim","doi":"10.1109/JEDS.2024.3465594","DOIUrl":null,"url":null,"abstract":"We analyzed the impact of work-function variation (WFV) in ferroelectric field-effect transistor (FeFET). To analyze the operation characteristics, we employed the technology computer-aided design (TCAD) simulations. After evaluating ferroelectricity (FE) characteristics and optimizing device model parameters through calibration, we extracted five key parameters from the hysteretic transfer curves of the FeFET: threshold voltage (Vth), on current (Iin), subthreshold swing (SS), off current (Ioff), and gate-induced drain leakage (GIDL). The extracted parameters were compared based on the presence or absence of FE and the ferroelectric thickness. It was confirmed that the presence of FE leads to increased variation due to dipole alignment with WFV, and that the electric field is maintained even with an increase in ferroelectric thickness","PeriodicalId":13210,"journal":{"name":"IEEE Journal of the Electron Devices Society","volume":"12 ","pages":"779-784"},"PeriodicalIF":2.0000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10685408","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of the Electron Devices Society","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10685408/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

We analyzed the impact of work-function variation (WFV) in ferroelectric field-effect transistor (FeFET). To analyze the operation characteristics, we employed the technology computer-aided design (TCAD) simulations. After evaluating ferroelectricity (FE) characteristics and optimizing device model parameters through calibration, we extracted five key parameters from the hysteretic transfer curves of the FeFET: threshold voltage (Vth), on current (Iin), subthreshold swing (SS), off current (Ioff), and gate-induced drain leakage (GIDL). The extracted parameters were compared based on the presence or absence of FE and the ferroelectric thickness. It was confirmed that the presence of FE leads to increased variation due to dipole alignment with WFV, and that the electric field is maintained even with an increase in ferroelectric thickness
铁电场效应晶体管功函数变化的影响
我们分析了铁电场效应晶体管(FeFET)中功函数变化(WFV)的影响。为了分析工作特性,我们采用了技术计算机辅助设计(TCAD)模拟。在评估了铁电(FE)特性并通过校准优化了器件模型参数后,我们从铁电场效应晶体管的滞后转移曲线中提取了五个关键参数:阈值电压(Vth)、导通电流(Iin)、亚阈值摆动(SS)、关断电流(Ioff)和栅极诱导漏极泄漏(GIDL)。根据是否存在 FE 和铁电厚度对提取的参数进行了比较。结果证实,FE 的存在会导致偶极对齐与 WFV 的变化增加,而且即使铁电厚度增加,电场也会保持不变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Journal of the Electron Devices Society
IEEE Journal of the Electron Devices Society Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
5.20
自引率
4.30%
发文量
124
审稿时长
9 weeks
期刊介绍: The IEEE Journal of the Electron Devices Society (J-EDS) is an open-access, fully electronic scientific journal publishing papers ranging from fundamental to applied research that are scientifically rigorous and relevant to electron devices. The J-EDS publishes original and significant contributions relating to the theory, modelling, design, performance, and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanodevices, optoelectronics, photovoltaics, power IC''s, and micro-sensors. Tutorial and review papers on these subjects are, also, published. And, occasionally special issues with a collection of papers on particular areas in more depth and breadth are, also, published. J-EDS publishes all papers that are judged to be technically valid and original.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信