{"title":"The relationship between the deterioration of frying oil and the generation of hazards during frying.","authors":"Guoyan Liu, Yinyin Wu, Xiaowei Xu, Xiangxin Xu, Li Liang, Jixian Zhang, Chaoting Wen, Youdong Li, Xudong He, Xin Xu, Xiaofang Liu","doi":"10.1080/19440049.2024.2406513","DOIUrl":null,"url":null,"abstract":"<p><p>Deep-fat frying gives food a desirable color and flavor but inevitably leads to oil deterioration and production of hazards. In this study, the simultaneous generation of multiple hazards under different frying conditions was investigated, the deterioration of frying oil was evaluated, and finally, their correlation was analyzed. The results showed that as the temperature of frying chicken wings increased from 150 to 190 °C, the levels of acrylamide (AA), heterocyclic amines (HCAs), and polycyclic aromatic hydrocarbons (PAHs) in the oil also increased proportionally. At 190 °C, the fried potato oil contained the highest AA content of 2.60 mg·kg<sup>-1</sup>, while the content of HCAs and PAHs was the highest in fried chicken wings oil, with values of 5.06 μg·kg<sup>-1</sup> and 5.18 μg·kg<sup>-1</sup>, respectively. 5-Hydroxymethylfurfural was detected only in fried potato oil. Oil quality deteriorated gradually with increasing frying temperature and heating time, as indicated by increased acid value, carbonyl value, and levels of total polar compounds. Overall, the results indicated hazards were positively correlated with oil deterioration, suggesting that oil deterioration contributed to the generation of hazards. This work links hazards and oil deterioration, which is crucial for improving the quality and safety of fried foods, while reducing negative environmental impacts, and achieving clean production.</p>","PeriodicalId":12295,"journal":{"name":"Food Additives and Contaminants Part A-chemistry Analysis Control Exposure & Risk Assessment","volume":" ","pages":"1554-1569"},"PeriodicalIF":2.3000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Additives and Contaminants Part A-chemistry Analysis Control Exposure & Risk Assessment","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1080/19440049.2024.2406513","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/25 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Deep-fat frying gives food a desirable color and flavor but inevitably leads to oil deterioration and production of hazards. In this study, the simultaneous generation of multiple hazards under different frying conditions was investigated, the deterioration of frying oil was evaluated, and finally, their correlation was analyzed. The results showed that as the temperature of frying chicken wings increased from 150 to 190 °C, the levels of acrylamide (AA), heterocyclic amines (HCAs), and polycyclic aromatic hydrocarbons (PAHs) in the oil also increased proportionally. At 190 °C, the fried potato oil contained the highest AA content of 2.60 mg·kg-1, while the content of HCAs and PAHs was the highest in fried chicken wings oil, with values of 5.06 μg·kg-1 and 5.18 μg·kg-1, respectively. 5-Hydroxymethylfurfural was detected only in fried potato oil. Oil quality deteriorated gradually with increasing frying temperature and heating time, as indicated by increased acid value, carbonyl value, and levels of total polar compounds. Overall, the results indicated hazards were positively correlated with oil deterioration, suggesting that oil deterioration contributed to the generation of hazards. This work links hazards and oil deterioration, which is crucial for improving the quality and safety of fried foods, while reducing negative environmental impacts, and achieving clean production.
期刊介绍:
Food Additives & Contaminants: Part A publishes original research papers and critical reviews covering analytical methodology, occurrence, persistence, safety evaluation, detoxification and regulatory control of natural and man-made additives and contaminants in the food and animal feed chain. Papers are published in the areas of food additives including flavourings, pesticide and veterinary drug residues, environmental contaminants, plant toxins, mycotoxins, marine biotoxins, trace elements, migration from food packaging, food process contaminants, adulteration, authenticity and allergenicity of foods. Papers are published on animal feed where residues and contaminants can give rise to food safety concerns. Contributions cover chemistry, biochemistry and bioavailability of these substances, factors affecting levels during production, processing, packaging and storage; the development of novel foods and processes; exposure and risk assessment.