The physiological role of Acinetobacter baumannii DacC is exerted through influencing cell shape, biofilm formation, the fitness of survival, and manifesting DD-carboxypeptidase and beta-lactamase dual-enzyme activities.

IF 2.2 4区 生物学 Q3 MICROBIOLOGY
Shilpa Pal, Diamond Jain, Sarmistha Biswal, Sumit Kumar Rastogi, Gaurav Kumar, Anindya S Ghosh
{"title":"The physiological role of Acinetobacter baumannii DacC is exerted through influencing cell shape, biofilm formation, the fitness of survival, and manifesting DD-carboxypeptidase and beta-lactamase dual-enzyme activities.","authors":"Shilpa Pal, Diamond Jain, Sarmistha Biswal, Sumit Kumar Rastogi, Gaurav Kumar, Anindya S Ghosh","doi":"10.1093/femsle/fnae079","DOIUrl":null,"url":null,"abstract":"<p><p>With the growing threat of drug-resistant Acinetobacter baumannii, there is an urgent need to comprehensively understand the physiology of this nosocomial pathogen. As penicillin-binding proteins are attractive targets for antibacterial therapy, we have tried to explore the physiological roles of two putative DD-carboxypeptidases, viz., DacC and DacD, in A. baumannii. Surprisingly, the deletion of dacC resulted in a reduced growth rate, loss of rod-shaped morphology, reduction in biofilm-forming ability, and enhanced susceptibility towards beta-lactams. In contrast, the deletion of dacD had no such effect. Interestingly, ectopic expression of dacC restored the lost phenotypes. The ∆dacCD mutant showed properties similar to the ∆dacC mutant. Conversely, in vitro enzyme kinetics assessments reveal that DacD is a stronger DD-CPase than DacC. Finally, we conclude that DacC might have DD-CPase and beta-lactamase activities, whereas DacD is a strong DD-CPase.</p>","PeriodicalId":12214,"journal":{"name":"Fems Microbiology Letters","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fems Microbiology Letters","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/femsle/fnae079","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

With the growing threat of drug-resistant Acinetobacter baumannii, there is an urgent need to comprehensively understand the physiology of this nosocomial pathogen. As penicillin-binding proteins are attractive targets for antibacterial therapy, we have tried to explore the physiological roles of two putative DD-carboxypeptidases, viz., DacC and DacD, in A. baumannii. Surprisingly, the deletion of dacC resulted in a reduced growth rate, loss of rod-shaped morphology, reduction in biofilm-forming ability, and enhanced susceptibility towards beta-lactams. In contrast, the deletion of dacD had no such effect. Interestingly, ectopic expression of dacC restored the lost phenotypes. The ∆dacCD mutant showed properties similar to the ∆dacC mutant. Conversely, in vitro enzyme kinetics assessments reveal that DacD is a stronger DD-CPase than DacC. Finally, we conclude that DacC might have DD-CPase and beta-lactamase activities, whereas DacD is a strong DD-CPase.

鲍曼不动杆菌 DacC 的生理作用是通过影响细胞形状、生物膜的形成、生存能力以及表现出 DD 羧肽酶和β-内酰胺酶双酶活性来实现的。
随着耐药性鲍曼不动杆菌的威胁日益严重,迫切需要全面了解这种医院病原菌的生理学。由于青霉素结合蛋白是抗菌治疗的诱人靶标,我们试图探索两种假定的 DD 羧肽酶(即 DacC 和 DacD)在鲍曼不动杆菌中的生理作用。令人惊讶的是,缺失 DacC 会导致生长速度降低、杆状形态消失、生物膜形成能力下降以及对β-内酰胺类药物的敏感性增强。相比之下,缺失 dacD 则没有这种影响。有趣的是,异位表达 dacC 能恢复失去的表型。∆dacCD 突变体显示出与∆dacC 突变体类似的特性。相反,体外酶动力学评估显示,DacD 是一种比 DacC 更强的 DD-CP 酶。最后,我们得出结论,DacC 可能具有 DD-CPase 和 beta-内酰胺酶活性,而 DacD 是一种强 DD-CPase。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Fems Microbiology Letters
Fems Microbiology Letters 生物-微生物学
CiteScore
4.30
自引率
0.00%
发文量
112
审稿时长
1.9 months
期刊介绍: FEMS Microbiology Letters gives priority to concise papers that merit rapid publication by virtue of their originality, general interest and contribution to new developments in microbiology. All aspects of microbiology, including virology, are covered. 2019 Impact Factor: 1.987, Journal Citation Reports (Source Clarivate, 2020) Ranking: 98/135 (Microbiology) The journal is divided into eight Sections: Physiology and Biochemistry (including genetics, molecular biology and ‘omic’ studies) Food Microbiology (from food production and biotechnology to spoilage and food borne pathogens) Biotechnology and Synthetic Biology Pathogens and Pathogenicity (including medical, veterinary, plant and insect pathogens – particularly those relating to food security – with the exception of viruses) Environmental Microbiology (including ecophysiology, ecogenomics and meta-omic studies) Virology (viruses infecting any organism, including Bacteria and Archaea) Taxonomy and Systematics (for publication of novel taxa, taxonomic reclassifications and reviews of a taxonomic nature) Professional Development (including education, training, CPD, research assessment frameworks, research and publication metrics, best-practice, careers and history of microbiology) If you are unsure which Section is most appropriate for your manuscript, for example in the case of transdisciplinary studies, we recommend that you contact the Editor-In-Chief by email prior to submission. Our scope includes any type of microorganism - all members of the Bacteria and the Archaea and microbial members of the Eukarya (yeasts, filamentous fungi, microbial algae, protozoa, oomycetes, myxomycetes, etc.) as well as all viruses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信