Characterization of Aeromonas salmonicida mesophilic isolates from Alberta (Canada) allows the development of a more sensitive Dictyostelium discoideum predation test.
Rébecca E St-Laurent, Antony T Vincent, Valérie E Paquet, Gabrielle R Leduc, Natalia Lorenc, Jennifer Ronholm, Xiaoji Liu, Steve J Charette
{"title":"Characterization of Aeromonas salmonicida mesophilic isolates from Alberta (Canada) allows the development of a more sensitive Dictyostelium discoideum predation test.","authors":"Rébecca E St-Laurent, Antony T Vincent, Valérie E Paquet, Gabrielle R Leduc, Natalia Lorenc, Jennifer Ronholm, Xiaoji Liu, Steve J Charette","doi":"10.1093/femsle/fnae078","DOIUrl":null,"url":null,"abstract":"<p><p>Aeromonas salmonicida is studied using Dictyostelium discoideum as a model host, with predation resistance measured as a key parameter. Aeromonas salmonicida mesophilic isolates exhibit inconclusive results with the amoebic model. This study focuses on new mesophilic isolates (S24-S38, S26-S10, and S28-S20) from Alberta, Canada, and introduces an improved predation test method. Phylogenetic analysis reveals two subgroups, with S24-S38 and S26-S10 clustering with the subspecies pectinolytica from Argentina, and S28-S20 with strains from India (Y567) and Spain (AJ83), showcasing surprising mesophilic strain diversity across geographic locations. Predation tests were carried out with various mesophilic and psychrophilic strains of A. salmonicida, including Alberta isolates. The amoeba cell lines used were DH1-10 and AX2. Although the mesophilic isolates were very resistant to predation by the amoeba DH1-10, some lost this resistance to the AX2 strain, which appeared more voracious in the conditions tested. In addition, when diluting the culture medium used in a predation test with AX2, a loss of the capacity to predation resistance was observed for all the mesophilic isolates, including the highly resistant S28-S20 isolate. This study provides insights into the predation resistance of A. salmonicida isolates and offers avenues for better characterizing mesophilic isolates.</p>","PeriodicalId":12214,"journal":{"name":"Fems Microbiology Letters","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11484801/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fems Microbiology Letters","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/femsle/fnae078","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Aeromonas salmonicida is studied using Dictyostelium discoideum as a model host, with predation resistance measured as a key parameter. Aeromonas salmonicida mesophilic isolates exhibit inconclusive results with the amoebic model. This study focuses on new mesophilic isolates (S24-S38, S26-S10, and S28-S20) from Alberta, Canada, and introduces an improved predation test method. Phylogenetic analysis reveals two subgroups, with S24-S38 and S26-S10 clustering with the subspecies pectinolytica from Argentina, and S28-S20 with strains from India (Y567) and Spain (AJ83), showcasing surprising mesophilic strain diversity across geographic locations. Predation tests were carried out with various mesophilic and psychrophilic strains of A. salmonicida, including Alberta isolates. The amoeba cell lines used were DH1-10 and AX2. Although the mesophilic isolates were very resistant to predation by the amoeba DH1-10, some lost this resistance to the AX2 strain, which appeared more voracious in the conditions tested. In addition, when diluting the culture medium used in a predation test with AX2, a loss of the capacity to predation resistance was observed for all the mesophilic isolates, including the highly resistant S28-S20 isolate. This study provides insights into the predation resistance of A. salmonicida isolates and offers avenues for better characterizing mesophilic isolates.
期刊介绍:
FEMS Microbiology Letters gives priority to concise papers that merit rapid publication by virtue of their originality, general interest and contribution to new developments in microbiology. All aspects of microbiology, including virology, are covered.
2019 Impact Factor: 1.987, Journal Citation Reports (Source Clarivate, 2020)
Ranking: 98/135 (Microbiology)
The journal is divided into eight Sections:
Physiology and Biochemistry (including genetics, molecular biology and ‘omic’ studies)
Food Microbiology (from food production and biotechnology to spoilage and food borne pathogens)
Biotechnology and Synthetic Biology
Pathogens and Pathogenicity (including medical, veterinary, plant and insect pathogens – particularly those relating to food security – with the exception of viruses)
Environmental Microbiology (including ecophysiology, ecogenomics and meta-omic studies)
Virology (viruses infecting any organism, including Bacteria and Archaea)
Taxonomy and Systematics (for publication of novel taxa, taxonomic reclassifications and reviews of a taxonomic nature)
Professional Development (including education, training, CPD, research assessment frameworks, research and publication metrics, best-practice, careers and history of microbiology)
If you are unsure which Section is most appropriate for your manuscript, for example in the case of transdisciplinary studies, we recommend that you contact the Editor-In-Chief by email prior to submission. Our scope includes any type of microorganism - all members of the Bacteria and the Archaea and microbial members of the Eukarya (yeasts, filamentous fungi, microbial algae, protozoa, oomycetes, myxomycetes, etc.) as well as all viruses.