Cellularity Defects Are Not Ubiquitous in the Brains of Fetuses With Down Syndrome

IF 2.7 4区 医学 Q2 DEVELOPMENTAL BIOLOGY
Marco Emili, Fiorenza Stagni, Maria Paola Bonasoni, Sandra Guidi, Renata Bartesaghi
{"title":"Cellularity Defects Are Not Ubiquitous in the Brains of Fetuses With Down Syndrome","authors":"Marco Emili,&nbsp;Fiorenza Stagni,&nbsp;Maria Paola Bonasoni,&nbsp;Sandra Guidi,&nbsp;Renata Bartesaghi","doi":"10.1002/dneu.22953","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Down syndrome (DS) is a genetic pathology characterized by various developmental defects. Unlike other clinical problems, intellectual disability is an invariant clinical trait of DS. Impairment of neurogenesis accompanied by brain hypotrophy is a typical neurodevelopmental phenotype of DS, suggesting that a reduction in the number of cells forming the brain may be a key determinant of intellectual disability. Previous evidence showed that fetuses with DS exhibit widespread hypocellularity in brain regions belonging to the temporal lobe memory systems, which may account for the typical explicit memory impairment that characterizes DS. In the current study, we have examined the basal ganglia, the insular cortex (INS), and the cingulate cortex (CCX) of fetuses with DS and age-matched controls (18–22 weeks of gestation), to establish whether cellularity defects involve regions that are not primarily involved in explicit memory. We found that fetuses with DS exhibit a notable hypocellularity in the putamen (−30%) and globus pallidus (−35%). In contrast, no cellularity differences were found in the INS and CCX, indicating that hypocellularity is not ubiquitous in the DS brain. The hypocellularity found in the basal ganglia, which are critically implicated in the control of movement, suggests that such alterations may contribute to the motor abnormalities of DS. The normal cytoarchitecture of the INS and CCX suggests that the alterations exhibited by people with DS in functions in which these regions are involved are not attributable to neuron paucity.</p>\n </div>","PeriodicalId":11300,"journal":{"name":"Developmental Neurobiology","volume":"84 4","pages":"264-273"},"PeriodicalIF":2.7000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Developmental Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/dneu.22953","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Down syndrome (DS) is a genetic pathology characterized by various developmental defects. Unlike other clinical problems, intellectual disability is an invariant clinical trait of DS. Impairment of neurogenesis accompanied by brain hypotrophy is a typical neurodevelopmental phenotype of DS, suggesting that a reduction in the number of cells forming the brain may be a key determinant of intellectual disability. Previous evidence showed that fetuses with DS exhibit widespread hypocellularity in brain regions belonging to the temporal lobe memory systems, which may account for the typical explicit memory impairment that characterizes DS. In the current study, we have examined the basal ganglia, the insular cortex (INS), and the cingulate cortex (CCX) of fetuses with DS and age-matched controls (18–22 weeks of gestation), to establish whether cellularity defects involve regions that are not primarily involved in explicit memory. We found that fetuses with DS exhibit a notable hypocellularity in the putamen (−30%) and globus pallidus (−35%). In contrast, no cellularity differences were found in the INS and CCX, indicating that hypocellularity is not ubiquitous in the DS brain. The hypocellularity found in the basal ganglia, which are critically implicated in the control of movement, suggests that such alterations may contribute to the motor abnormalities of DS. The normal cytoarchitecture of the INS and CCX suggests that the alterations exhibited by people with DS in functions in which these regions are involved are not attributable to neuron paucity.

唐氏综合征胎儿大脑中的细胞性缺陷并非普遍存在
唐氏综合征(DS)是一种以各种发育缺陷为特征的遗传病。与其他临床问题不同的是,智力障碍是唐氏综合征不变的临床特征。神经发生障碍伴有脑萎缩是DS的典型神经发育表型,这表明形成大脑的细胞数量减少可能是智力障碍的关键决定因素。先前的证据显示,DS 胎儿在属于颞叶记忆系统的脑区表现出广泛的细胞减少,这可能是 DS 典型的显性记忆障碍的原因。在本研究中,我们检测了 DS 胎儿和年龄匹配对照组(妊娠 18-22 周)的基底节、岛叶皮层(INS)和扣带回皮层(CCX),以确定细胞性缺陷是否涉及主要不参与显性记忆的区域。我们发现,DS 胎儿的丘脑(-30%)和苍白球(-35%)明显细胞功能低下。与此相反,INS和CCX没有发现细胞性差异,这表明细胞性低下在DS脑中并非无处不在。基底神经节与运动控制有重要关系,基底神经节细胞减少表明,这种改变可能是导致DS运动异常的原因之一。INS和CCX的正常细胞结构表明,DS患者在这些区域所参与的功能方面所表现出的改变并不能归因于神经元的缺乏。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Developmental Neurobiology
Developmental Neurobiology 生物-发育生物学
CiteScore
6.50
自引率
0.00%
发文量
45
审稿时长
4-8 weeks
期刊介绍: Developmental Neurobiology (previously the Journal of Neurobiology ) publishes original research articles on development, regeneration, repair and plasticity of the nervous system and on the ontogeny of behavior. High quality contributions in these areas are solicited, with an emphasis on experimental as opposed to purely descriptive work. The Journal also will consider manuscripts reporting novel approaches and techniques for the study of the development of the nervous system as well as occasional special issues on topics of significant current interest. We welcome suggestions on possible topics from our readers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信