Shi Zhang, Xiao Han, Xiaocheng Liu, Zixiang Huang, Pinyi Wang, Sizhe Sheng, Geng Wu, Jiachuan He, Jingjing Guo, Xusheng Zheng, Hai Li, Jian-Wei Liu, Xun Hong
{"title":"Amorphous-Crystalline Interface Induced Internal Electric Fields for Electrochromic Smart Window","authors":"Shi Zhang, Xiao Han, Xiaocheng Liu, Zixiang Huang, Pinyi Wang, Sizhe Sheng, Geng Wu, Jiachuan He, Jingjing Guo, Xusheng Zheng, Hai Li, Jian-Wei Liu, Xun Hong","doi":"10.1002/adma.202410355","DOIUrl":null,"url":null,"abstract":"Balancing optical modulation and response time is crucial for achieving high coloration efficiency in electrochromic materials. Here, internal electric fields are introduced to titanium dioxide nanosheets by constructing abundant amorphous-crystalline interfaces, ensuring large optical modulation while reducing response time and therefore improving coloration efficiency. Aberration-corrected high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) reveals the presence of numerous amorphous-crystalline phase boundaries in titanium dioxide nanosheets. Kelvin probe force microscopy (KPFM) exhibits an intense surface potential distribution, demonstrating the presence of internal electric fields. Density functional theory (DFT) calculations confirm that the amorphous-crystalline heterointerfaces can generate internal electric fields and reduce diffusion barriers of lithium ions. As a result, the amorphous-crystalline titanium dioxide nanosheets exhibit better coloration efficiency (35.1 cm<sup>2</sup> C<sup>−1</sup>) than pure amorphous and crystalline titanium dioxide nanosheets.","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":null,"pages":null},"PeriodicalIF":6.7000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202410355","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Balancing optical modulation and response time is crucial for achieving high coloration efficiency in electrochromic materials. Here, internal electric fields are introduced to titanium dioxide nanosheets by constructing abundant amorphous-crystalline interfaces, ensuring large optical modulation while reducing response time and therefore improving coloration efficiency. Aberration-corrected high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) reveals the presence of numerous amorphous-crystalline phase boundaries in titanium dioxide nanosheets. Kelvin probe force microscopy (KPFM) exhibits an intense surface potential distribution, demonstrating the presence of internal electric fields. Density functional theory (DFT) calculations confirm that the amorphous-crystalline heterointerfaces can generate internal electric fields and reduce diffusion barriers of lithium ions. As a result, the amorphous-crystalline titanium dioxide nanosheets exhibit better coloration efficiency (35.1 cm2 C−1) than pure amorphous and crystalline titanium dioxide nanosheets.
期刊介绍:
Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.