{"title":"Machine-learned coarse-grained potentials for particles with anisotropic shapes and interactions","authors":"Gerardo Campos-Villalobos, Rodolfo Subert, Giuliana Giunta, Marjolein Dijkstra","doi":"10.1038/s41524-024-01405-4","DOIUrl":null,"url":null,"abstract":"<p>Computational investigations of biological and soft-matter systems governed by strongly anisotropic interactions typically require resource-demanding methods such as atomistic simulations. However, these techniques frequently prove to be prohibitively expensive for accessing the long-time and large-length scales inherent to such systems. Conversely, coarse-grained models offer a computationally efficient alternative. Nonetheless, models of this type have seldom been developed to accurately represent anisotropic or directional interactions. In this work, we introduce a straightforward bottom-up, data-driven approach for constructing single-site coarse-grained potentials suitable for particles with arbitrary shapes and highly directional interactions. Our method for constructing these coarse-grained potentials relies on particle-centered descriptors of local structure that effectively encode dependencies on rotational degrees of freedom in the interactions. By using these descriptors as regressors in a linear model and employing a simple feature selection scheme, we construct single-site coarse-grained potentials for particles with anisotropic interactions, including surface-patterned particles and colloidal superballs in the presence of non-adsorbing polymers. We validate the efficacy of our models by accurately capturing the intricacies of the potential-energy surfaces from the underlying fine-grained models. Additionally, we demonstrate that this simple approach can accurately represent the contact function (shape) of non-spherical particles, which may be leveraged to construct continuous potentials suitable for large-scale simulations.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"22 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-024-01405-4","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Computational investigations of biological and soft-matter systems governed by strongly anisotropic interactions typically require resource-demanding methods such as atomistic simulations. However, these techniques frequently prove to be prohibitively expensive for accessing the long-time and large-length scales inherent to such systems. Conversely, coarse-grained models offer a computationally efficient alternative. Nonetheless, models of this type have seldom been developed to accurately represent anisotropic or directional interactions. In this work, we introduce a straightforward bottom-up, data-driven approach for constructing single-site coarse-grained potentials suitable for particles with arbitrary shapes and highly directional interactions. Our method for constructing these coarse-grained potentials relies on particle-centered descriptors of local structure that effectively encode dependencies on rotational degrees of freedom in the interactions. By using these descriptors as regressors in a linear model and employing a simple feature selection scheme, we construct single-site coarse-grained potentials for particles with anisotropic interactions, including surface-patterned particles and colloidal superballs in the presence of non-adsorbing polymers. We validate the efficacy of our models by accurately capturing the intricacies of the potential-energy surfaces from the underlying fine-grained models. Additionally, we demonstrate that this simple approach can accurately represent the contact function (shape) of non-spherical particles, which may be leveraged to construct continuous potentials suitable for large-scale simulations.
期刊介绍:
npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings.
Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.