{"title":"Standby and inspection policy optimization in systems exposed to common and operational shock processes","authors":"","doi":"10.1016/j.ress.2024.110509","DOIUrl":null,"url":null,"abstract":"<div><div>Motivated by practical applications like data storage, product defect detection, medical imagining, and sensing, this paper puts forward a new inspected standby system model where only one element can be online operating and only one element can stay in the standby mode at any time. Both operating and standby elements are exposed to random common shocks, causing their deterioration and even failures. The operating element may also be deteriorated by random operational shocks. The system undergoes periodic inspections to determine the refill of the operating or standby element. A new optimization problem is formulated and solved to determine the inspection and standby element addition policy with the objective to minimize the expected mission cost (EMC) attributed to factors including system downtime, number of inspections, element modes and failures, element activation and mode transitions. A new and efficient system state transition-based numerical algorithm is proposed to evaluate the EMC. A case study of a standby sensor system is provided to demonstrate the proposed model and impacts of several cost parameters as well as shock rates on the EMC and the optimal inspection and standby element addition policy, leading to insightful managerial guidelines for the system design and operation.</div></div>","PeriodicalId":54500,"journal":{"name":"Reliability Engineering & System Safety","volume":null,"pages":null},"PeriodicalIF":9.4000,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reliability Engineering & System Safety","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0951832024005817","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0
Abstract
Motivated by practical applications like data storage, product defect detection, medical imagining, and sensing, this paper puts forward a new inspected standby system model where only one element can be online operating and only one element can stay in the standby mode at any time. Both operating and standby elements are exposed to random common shocks, causing their deterioration and even failures. The operating element may also be deteriorated by random operational shocks. The system undergoes periodic inspections to determine the refill of the operating or standby element. A new optimization problem is formulated and solved to determine the inspection and standby element addition policy with the objective to minimize the expected mission cost (EMC) attributed to factors including system downtime, number of inspections, element modes and failures, element activation and mode transitions. A new and efficient system state transition-based numerical algorithm is proposed to evaluate the EMC. A case study of a standby sensor system is provided to demonstrate the proposed model and impacts of several cost parameters as well as shock rates on the EMC and the optimal inspection and standby element addition policy, leading to insightful managerial guidelines for the system design and operation.
期刊介绍:
Elsevier publishes Reliability Engineering & System Safety in association with the European Safety and Reliability Association and the Safety Engineering and Risk Analysis Division. The international journal is devoted to developing and applying methods to enhance the safety and reliability of complex technological systems, like nuclear power plants, chemical plants, hazardous waste facilities, space systems, offshore and maritime systems, transportation systems, constructed infrastructure, and manufacturing plants. The journal normally publishes only articles that involve the analysis of substantive problems related to the reliability of complex systems or present techniques and/or theoretical results that have a discernable relationship to the solution of such problems. An important aim is to balance academic material and practical applications.